The impact of the COVID-19 pandemic has accentuated our digital dependency, on a global scale. Data centres have become even more critical to modern society. The processing and storage of information underpin the economy, characterised by a consistent increase in the volume of data and applications, and reliance upon the internet and IT services.

Data centres classed as CNI

As such, they are now classed as Critical National Infrastructure (CNI) and sit under the protection of the National Cyber Security Centre (NCSC), and the Centre for the Protection of National Infrastructure (CPNI).

As land continues to surge in value, data centre operators are often limited for choice, on where they place their sites and are increasingly forced to consider developed areas, close to other infrastructures, such as housing or industrial sites.

Complex security needs

One misconception when it comes to data centres is that physical security is straightforward

One misconception when it comes to data centres is that physical security is straightforward. However, in practice, things are far more complex.

On top of protecting the external perimeter, thought must also be given to factors, such as access control, hostile vehicle mitigation (HVM), protecting power infrastructure, as well as standby generators and localising security devices to operate independently of the main data centre.

Face value

How a site looks is more important than you may think. Specify security that appears too hostile risks blatantly advertising that you’re protecting a valuable target, ironically making it more interesting to opportunistic intruders.

The heightened security that we recommend to clients for these types of sites, include 4 m high-security fences, coils of razor wire, CCTV, and floodlighting. When used together in an integrated approach, it’s easy to see how they make the site appear hostile against its surroundings. However, it must appear secure enough to give the client peace of mind that the site is adequately protected. Getting the balance right is crucial.

So, how do you balance security, acoustics and aesthetics harmoniously?

  • Security comes first

These are essential facilities and as a result, they require appropriate security investment. Cutting corners leads to a greater long-term expense and increases the likelihood of highly disruptive attacks.

  • Checkpoints

Fortunately, guidance is available through independent accreditations and certifications, such as the Loss Prevention Certification Board’s (LPCB) LPS 1175 ratings, the PAS 68 HVM rating, CPNI approval, and the police initiative - Secured by Design (SBD).

Thorough technical evaluation and quality audit

These bodies employ thorough technical evaluation work and rigorous quality audit processes to ensure products deliver proven levels of protection. With untested security measures, you will not know whether a product works until an attack occurs. Specifying products accredited by established bodies removes this concern.

  • High maintenance

Simply installing security measures and hoping for the best will not guarantee 24/7 protection. Just as you would keep computer software and hardware updated, to provide the best level of protection for the data, physical security also needs to be well-maintained, in order to ensure it is providing optimum performance.

Importance of testing physical security parameters

Inspecting the fence line may seem obvious and straightforward, but it needs to be done regularly. From our experience, this is something that is frequently overlooked. The research we conducted revealed that 63% of companies never test their physical security.

They should check the perimeter on both sides and look for any attempted breaches. Foliage, weather conditions or topography changes can also affect security integrity. Companies should also check all fixtures and fittings, looking for damage and corrosion, and clear any litter and debris away.

  • Accessibility

When considering access control, speed gates offer an excellent solution for data centres. How quickly a gate can open and close is essential, especially when access to the site is restricted.

The consequences of access control equipment failing can be extremely serious, far over a minor irritation or inconvenience. Vehicle and pedestrian barriers, especially if automated, require special attention to maintain effective security and efficiency.

  • Volume control

Data centres don’t generally make the best neighbours. The noise created from their 24-hour operation can be considerable. HVAC systems, event-triggered security and fire alarms, HV substations, and vehicle traffic can quickly become unbearable for residents.

Secure and soundproof perimeter

As well as having excellent noise-reducing properties, timber is also a robust material for security fencing

So, how do you create a secure and soundproof perimeter? Fortunately, through LPS 1175 certification and CPNI approval, it is possible to combine high-security performance and up to 28dB of noise reduction capabilities.

As well as having excellent noise-reducing properties, timber is also a robust material for security fencing. Seamlessly locking thick timber boards create a flat face, making climbing difficult and the solid boards prevent lines of sight into the facility.

For extra protection, steel mesh can either be added to one side of the fence or sandwiched between the timber boards, making it extremely difficult to break through.

  • A fair façade

A high-security timber fence can be both, aesthetically pleasing and disguise its security credentials. Its pleasant natural façade provides a foil to the stern steel bars and mesh, often seen with other high-security solutions. Of course, it’s still important that fencing serves its primary purposes, so make sure you refer to certifications, to establish a product’s security and acoustic performance.

  • Better protected

The value of data cannot be overstated. A breach can have severe consequences for public safety and the economy, leading to serious national security implications.

Countering varied security threats

Data centres are faced with an incredibly diverse range of threats, including activism, sabotage, trespass, and terrorism on a daily basis. It’s no wonder the government has taken an active role in assisting with their protection through the medium of the CPNI and NCSC.

By working with government bodies such as the CPNI and certification boards like the LPCB, specifiers can access a vault of useful knowledge and advice. This will guide them to effective and quality products that are appropriate for their specific site in question, ensuring it’s kept safe and secure.

Download PDF version Download PDF version

In case you missed it

Security & Safety Things becomes Azena, underscores advances in smart camera platform development
Security & Safety Things becomes Azena, underscores advances in smart camera platform development

Security & Safety Things is announcing that it has rebranded to Azena, a new brand name that underscores the company’s corporate growth and leading-edge smart camera platform and positions it for the next chapter in its ambitious plans for redefining video analytics. With a growing slate of global customer and partner collaborations and expanding geographic coverage, Azena will continue to increase the value of its platform for systems integrators and end customers. More than 100 AI-enabled video analytics apps Since its market introduction in 2018, Azena has grown to more than 120 employees spread across its headquarters in Munich, its technology Innovation Accelerator facility in Pittsburgh, and another development hub in Eindhoven, The Netherlands, all supporting the Azena open platform for smart cameras.Integrators can flexibly add or change apps on one or multiple cameras as needed for their customers The Azena platform is comprised of an open operating system for cameras and an Application Store with nearly 100 Artificial Intelligence (AI)-enabled video analytics apps. It enables smart cameras to simultaneously run multiple apps directly on the device. Integrators can flexibly add or change apps on one or multiple cameras as needed for their customers and use any of the 15 cameras from six different manufacturer partners in a variety of form factors.“Systems integrators play a crucial role in connecting the video analytic edge devices on our platform into the larger system landscape for a truly data-driven approach to security, operational intelligence and automation,” said Hartmut Schaper, chief executive officer, Azena. “Our new identity as Azena positions us for improved name recognition and market presence as we continue to add functionality and the potential for expansion into new markets for our systems integrator partners.” More than 40 use cases in 25+ verticals The Azena Application Store features apps that address more than 40 different use cases in at least 25 different vertical markets, ranging from traditional perimeter security, retail loss prevention and occupancy management to stadium security and even the unique needs of aquaculture. Some examples of use cases include: One U.S. professional hockey team, the Pittsburgh Penguins, is using the Azena platform to monitor crowding at its stadium entrances, license plate recognition for more efficient stadium parking and heat mapping for improved layouts of its fan merchandise retail outlets. An oil drilling company is deploying smart cameras running the Azena OS so operations staff can remotely monitor any pumping disruptions in the oil fields. A chemical plant is monitoring its locations for the presence of smoke to enhance  workplace safety measures Collaboration with Proseguy Systems integrator Prosegur, one of the world’s largest security companies, has announced its collaboration with Azena to use analytics on the edge as part of its Security Operations Center as a service offering. By deploying more sophisticated analytics to measure activity or automatically verify alarms, incoming alarm traffic from customer sites can be prefiltered, reducing the number of alarms needing to be handled by human operators in the SOC, enabling a more appropriate response.Integrators will find a host of other new features in the Azena platformIntegrators will find a host of other new features in the Azena platform designed to leverage device management capabilities and remote access for diagnosis and maintenance to cameras on a customer site, using Azena’s digital twin architecture. Other benefits include: Ability to run all the analytics apps from the Azena Application Store on the video stream of existing IP cameras by means of a small appliance from one of the camera manufacturer partners, bringing AI to already installed video systems Wide range of integration options to connect VMS systems, dashboard software, access systems, other apps or other cameras to support the creation of sophisticated end-to-end solutions Option for integrators to build and deploy custom solutions with apps available only to them and their customers via the Azena Application Store Ability to securely and remotely connect to a customer camera without a VPN A new integration assistant that quickly builds middleware for custom integrations between Azena components and third-party software and hardware Opportunity to negotiate directly with app developers on bulk pricing Standardised terms of use that can be adopted by all applications in the Application Store

How soon will access control cards become extinct and why?
How soon will access control cards become extinct and why?

Since the advent of the physical security industry, access control has been synonymous with physical cards, whether 125 kHz ‘prox’ cards or the newer smart card alternatives. However, other credentials have also come on the scene, including biometrics and even smart phones. Some of these choices have distinct cost and security advantages over physical cards. We asked this week’s Expert Panel Roundtable: How soon will the access control card become extinct and why? 

Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach
Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach

As the number of connected devices increases worldwide, the ways that they are being used, designed, and tested have also expanded. The rise of connected devices is demanding engineers to harness the power of the internet of things, which is expected to hit 28 billion by 2025. A comprehensive approach to device design is needed more than ever to address the challenges that this rapid growth will bring. Why engineers should be using IoT technology in product design The demand for devices designed to use the Internet of Things (IoT) technology is increasing as more industries are finding expanded ways to put them into use. Industries such as healthcare, automobiles, and agriculture are becoming more dependent on cloud capabilities and are therefore in need of new devices able to connect to it. Due to this rise in demand, an increasing amount of devices are delivering a multitude of benefits both to consumers and companies. However, this new wave of products has led to a growing list of challenges for engineers as they are forced to address IoT tech in regards to connectivity, regulations, longevity, and security. Ways to use IoT in the development process Engineers are facing these new challenges along with the normal pressure of deadlines and test considerations. By approaching all of these issues from a comprehensive point-of-view, the solutions become clearer and new device capabilities can be born. Let’s look at the challenges individually as well as possible solutions for them. Improving connectivity IoT enables data to be transferred between infrastructure, the cloud, and devices, making the process smooth  Because IoT is based around connection, it’s no surprise that the primary challenge for engineers to overcome is the improvement of connectivity between devices. IoT enables data to be transferred between infrastructure, the cloud, and devices, so making this process as smooth as possible is crucial. The main challenges involved with connectivity have to do with development and product testing while meeting industry standards and best practices. Additionally, many companies lack the necessary equipment and technology to develop new IoT devices, which makes it difficult to create scalable prototypes and test new products. Suggested solutions To address the issue of not having the expertise and necessary tools for testing, we suggest outsourcing the prototyping and evaluation process instead of attempting to tackle this in-house. By doing this, you’re able to free up resources that would otherwise be needed for expensive equipment and qualified staff. Helping comply with regulations When working with devices that are connected across the world, there is a complex web of regulations and conformance standards that can lead to challenges for engineers. The necessity of complying with these regulations while also pushing to meet deadlines can be burdensome and lead to an increase in production time and expenses. Failure to comply with global and regional laws, as well as system and carrier requirements, can lead to fines and costly setbacks. This type of failure can destroy a company’s reputation on top of causing financial losses, often leading to the loss of business. Suggested solutions By testing the IoT device design and components early, engineers can address any pre-compliance issues that may arise. During the early stages of development, we suggest using scalable and automated test systems readily available in the marketplace. Improved communication with other devices New challenges arise as new devices hit the market and existing technologies are redesigned to offer a better experience In the rapidly growing number of connected devices, new challenges will arise as new devices hit the market and existing technologies are redesigned to offer a better user experience. This rapid growth in devices will lead to congested networks leading to the necessity of devices being able to function in the midst of increased traffic and interference. Failure to do this will lead to delayed responses which could prove to be fatal. Suggested solutions The best solution for this issue is found in the evaluation process and supporting test methods that the Institute of Electrical and Electronics Engineers (IEEE) published in the American National Standard for Evaluation of Wireless Coexistence (ANSI). This process addresses the interconnectivity issues present in radio frequency environments. The outlined process involves defining the environment and evaluating the wireless performance of the equipment through thorough testing. An in-depth version can be found in its entirety online. Increasing the longevity of devices IoT devices are being used in vital industries such as healthcare and automotive so battery life and power consumption are two challenges that engineers must take seriously. A failure in this area could potentially lead to loss of life or safety concerns on the road. As new firmware and software are being designed to address these factors, engineers must be implementing them into IoT devices with the ability to be continually updated. Suggested solutions Longevity should be addressed in all aspects of the design process and tested thoroughly using a wide range of currents. By doing this, an engineer can simulate consumer applications to best predict performance. Security Security and privacy are concerns with any technology, but with the use of IoT in medical devices, it’s paramount Security has been a controversial issue for IoT since its inception. Security and privacy are concerns with any technology, but with the widespread use of IoT in medical devices, smart home appliances, and access control and surveillance, it’s paramount. For example, medical devices may store information about health parameters, medications, and prescriber information. In some cases, these devices may be controlled by an app, such as a smart pacemaker, to prevent heart arrhythmias. Naturally, a security issue in these devices could be devastating. Another example of dangerous security concern is with surveillance cameras and access control, such as for home or business security systems. These intelligent door locking systems contain locks, lock access controllers, and associated devices that communicate with each other. Suspicious activities are flagged with alerts and notifications, but if a hacker gains access, it can lead to real-world, physical danger. Security design points Here are some key points for security design: Physical security: IoT devices may be in external, isolated locations that are vulnerable to attack from not only hackers but by human contact. Embedding security protection on every IoT device is expensive, but it’s important for general security and data safety. Security of data exchange: Data protection is also important because data gets transmitted from IoT devices to the gateway, then onto the cloud. With surveillance and access control information or sensitive medical information, and encryption is vital to protecting data from a breach. Cloud storage security: Similar to data exchange, the information stored in medical devices, surveillance and access control systems, and some smart appliances with payment features, must be protected. This includes encryption and device authentication through access control, which can police what resources can be accessed and used. Update: Security vulnerabilities will always occur, so the key to addressing them is having a plan to address errors and release patches. Customers should also have options to secure devices quickly and effectively. Suggested solutions Engineers can include security and protection into IoT devices with early and perpetual testing throughout the design process. Most security breaches occur at endpoints or during updates, giving engineers a starting point for how to address them. Creating more secure devices Ensuring the security of connected devices should be of supreme importance for engineers as these devices are vulnerable to security breaches. The ultimate security of devices goes beyond the scope of engineering as the network and enterprise levels must also be secure to protect against potential threats. However, engineers play a role in this protection as well and should consider device security in the design process. Suggested solutions On a device level, engineers can help protect IoT devices from vulnerabilities by implementing early testing and continuing it throughout the design process. Most security transgressions occur at endpoints so this continual testing can, and should, create barriers to breaches. Regulations and compliance For IoT engineers, the complex web of regulations and compliance standards present new challenges Regulations and compliance surrounding data and technology are nothing new, but for IoT engineers, the complex web of regulations and compliance standards present new challenges. Engineers are already addressing obstacles in security and connectivity, all while meeting deadlines, and working around regulations adds time and expense to the process. Unfortunately, a failure to comply with global, regional, or local laws can lead to setbacks and fines. In addition to time lost in production and possible fines, the damage to a company’s reputation can lead to even more losses. Suggested solutions Compliance should be considered early and often in the design process. In the early stages of development, the IoT device or components can be tested to address and compliance issues. If possible, use a scalable and automated test system. The comprehensive solution As we stare at an uncertain future full of possibilities, it’s clear to see that new challenges will continue to be presented as technology evolves and new innovative devices are designed by engineers. By addressing these issues early and often, solutions can be implemented and problems prevented before they even have a chance to occur thanks to sound engineering and solid design.