Since 2006, the LUSAX research program at Lund University in Sweden has investigated the effects of digitisation on the physical security industry

Since 2006, the LUSAX research program at Lund University in Sweden has investigated the effects of digitisation on the physical security industry. This article will look into the forces driving digitisation, and how those forces broadly translate and impacts the physical security industry.

Historically, physical security systems have moved from purely mechanical systems into systems holding both mechanical and electronic low-voltage circuit-based components. Development was pushed further forward when digital components emerged in the late 1980’s with the introduction of Digital Video Recorders (DVRs). And from 1996, when Sweden-based Axis Communications claims to have introduced the first network-enabled surveillance camera, digital components were further introduced into physical security systems. From a strategic business point of view, the digital shift most importantly brought with it new ways of doing business. Currently it is more common to observe novel and potentially more efficient business models challenging the proprietary and integrated one-brand manufacturer-distributor-integrator model historically associated with the industry.

However, from an end-user point of view, the primary objective of a security system is still to protect organisational assets from harmful action. Preferably this is achieved by means of pro-active deterrence, and secondarily by direct prevention. Any change in the underlying technology – mechanical or digital – needs to be evaluated against these objectives. In order for technological advancements to be value adding, it needs to either strengthen the overall performance – both in terms of functional and non-functional requirements – of the current system, or lower costs for the same performance.

In the case of a video surveillance system, the purpose of the system could be to decrease the number of shoplifting incidents at a store by means of temporarily storing the snapshots or shorter video sequences of customers visiting the store. Two examples of advancements associated with digital surveillance cameras may for example be superior performance in terms of picture quality and ease of access to the recorded material compared to previous generations of surveillance cameras. But, it could also be to protect assets against unintended harmful actions, for example in protecting co-workers from exiting areas with sensitive business information. Furthermore, digital systems have been suggested to have potential value in improving core value-adding operations. A prime example of this feature is the track-and-trace functionality in parcel shipment. Finally, the potential of pre-programmed self-diagnostics is another example of feature associated with future digital systems.

Why digitisation happens

When Sweden-based Axis Communications claims to have introduced the first network-enabled surveillance camera, digital components were further introduced into physical security systems

More broadly, digitisation is tightly coupled to what is referred to as Moore’s Law within the computing industry. First formulated by Gordon Moore at Intel in the early 1960’s, it proposed that computing capacity doubles every 12 months. Put in other terms, if we enter a computer store to buy computing power in June 2013 for one dollar, we would receive double the amount of computing power in June 2014 for the same amount of dollar. Gordon Moore was proven right, although slight modifications to the law have been added. The current doubling-speed in terms of computing power happens every 24 months. While this is merely a computational law, the business-consequences are important. Assuming a doubling of computing power every 24 months creates business opportunities for entrepreneurs that can translate the computing power into business-serving concepts at a low cost. This creates a strong cost-pressure on firms to consider digitising and even automating parts of the value-adding process. Examples of professional categories that have been affected by automation are for example secretaries, travel agents and bank tellers.

Moore’s law may impact industries in mainly two distinct manners: The first being digitisation that enhances the physical and manual activities – referred to as a kind of digital overlay to the current activities. The second one having more fundamental impact on an industry in the form of automation – simply substituting manual labour with (digital) machines, like in the case of the professions mentioned earlier.

Reasons for a slower pace of digitisation

Consequently, the key decision is not to ignore digitisation as a mere ‘gadget shift’, but rather to ask the question - in what way will Moore´s law impact my industry sector? Will Moore’s Law digitally reinforce and complement current work-practices according to the digital overlay-scenario, or will it simply substitute manual security labour gradually? The evidence the LUSAX-team has collected the past 9 years suggests a slower than expected, gradual and complementary development compared to other industries. We see three main reasons to a slower development speed.

The first (1) being the nature of security systems, they are to deter harmful action that is based on non-standardised behaviour. The intruder is actively attempting to outsmart the system. Routine business tasks, like registering invoices is a routine that once established may easily be duplicated and lends itself easily to digitisation and automation. Quite the opposite – and due to the variation in the intruder’s behaviour –duplication of the external qualities of a security system across an organisation would represent a risk in itself.

In the case of the physical security industry, the evidence collected by the LUSAX group suggests a more slow-moving digitisation more associated with the digitally enhancing scenario

Secondly (2), the service-level of security systems should be near fail-safe. Everyday use of IT-based services is associated with a higher degree of acceptance to operational disruptions, meaning users and organisations tolerate a lower than fail-safe performance-level compared to security systems. This is sometimes refereed to as the Beta-culture of the IT-industry. In turn, this generates a more conservative approach to experimentation with new technologies among security practitioners that makes digitisation a slower-moving process compared to other sectors.

Third (3) and finally, while it is true that security management has increased in importance from a corporate point of view the past decades, security management still is redundancy and contingency-centric. This in turn hampers a rapid diffusion of digital security innovations. On the other hand, strategic management more generally concerns itself with achieving organisational goals by actively taking risks in a lean and non-redundancy direction. This orientation lends itself more compatible with the automation scenario, for example reducing the need to keep parts of the corporate accounting, marketing or R&D staff internally.

Summary

In this article we have briefly introduced Moore’s Law as a broad driver of digitisation. The effects of digitisation may impact industries differently. Either disruptively - basically gradually reducing the need for manual execution of current work practices, or enhance activities by means of digitisation. In the case of the physical security industry, the evidence collected by the LUSAX group suggests a more slow-moving digitisation more associated with the digitally enhancing scenario.

Download PDF version Download PDF version

Author profile

Markus Lahtinen Researcher and Lecturer at Lund University, LUSAX Security Informatics

Markus Lahtinen holds a Master’s degree in Informatics (2001) and a Bachelor's degree in Business Administration and Economics (2006). The past ten years he has been active as lecturer at the Department of Informatics at the School of Economics and Management, teaching mainly Interaction Design but also given classes on Decision Support Systems, UML, IT and organisation, and supervising theses work for students at Bachelor and Master level.

In case you missed it

How soon will access control cards become extinct and why?
How soon will access control cards become extinct and why?

Since the advent of the physical security industry, access control has been synonymous with physical cards, whether 125 kHz ‘prox’ cards or the newer smart card alternatives. However, other credentials have also come on the scene, including biometrics and even smart phones. Some of these choices have distinct cost and security advantages over physical cards. We asked this week’s Expert Panel Roundtable: How soon will the access control card become extinct and why? 

Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach
Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach

As the number of connected devices increases worldwide, the ways that they are being used, designed, and tested have also expanded. The rise of connected devices is demanding engineers to harness the power of the internet of things, which is expected to hit 28 billion by 2025. A comprehensive approach to device design is needed more than ever to address the challenges that this rapid growth will bring. Why engineers should be using IoT technology in product design The demand for devices designed to use the Internet of Things (IoT) technology is increasing as more industries are finding expanded ways to put them into use. Industries such as healthcare, automobiles, and agriculture are becoming more dependent on cloud capabilities and are therefore in need of new devices able to connect to it. Due to this rise in demand, an increasing amount of devices are delivering a multitude of benefits both to consumers and companies. However, this new wave of products has led to a growing list of challenges for engineers as they are forced to address IoT tech in regards to connectivity, regulations, longevity, and security. Ways to use IoT in the development process Engineers are facing these new challenges along with the normal pressure of deadlines and test considerations. By approaching all of these issues from a comprehensive point-of-view, the solutions become clearer and new device capabilities can be born. Let’s look at the challenges individually as well as possible solutions for them. Improving connectivity IoT enables data to be transferred between infrastructure, the cloud, and devices, making the process smooth  Because IoT is based around connection, it’s no surprise that the primary challenge for engineers to overcome is the improvement of connectivity between devices. IoT enables data to be transferred between infrastructure, the cloud, and devices, so making this process as smooth as possible is crucial. The main challenges involved with connectivity have to do with development and product testing while meeting industry standards and best practices. Additionally, many companies lack the necessary equipment and technology to develop new IoT devices, which makes it difficult to create scalable prototypes and test new products. Suggested solutions To address the issue of not having the expertise and necessary tools for testing, we suggest outsourcing the prototyping and evaluation process instead of attempting to tackle this in-house. By doing this, you’re able to free up resources that would otherwise be needed for expensive equipment and qualified staff. Helping comply with regulations When working with devices that are connected across the world, there is a complex web of regulations and conformance standards that can lead to challenges for engineers. The necessity of complying with these regulations while also pushing to meet deadlines can be burdensome and lead to an increase in production time and expenses. Failure to comply with global and regional laws, as well as system and carrier requirements, can lead to fines and costly setbacks. This type of failure can destroy a company’s reputation on top of causing financial losses, often leading to the loss of business. Suggested solutions By testing the IoT device design and components early, engineers can address any pre-compliance issues that may arise. During the early stages of development, we suggest using scalable and automated test systems readily available in the marketplace. Improved communication with other devices New challenges arise as new devices hit the market and existing technologies are redesigned to offer a better experience In the rapidly growing number of connected devices, new challenges will arise as new devices hit the market and existing technologies are redesigned to offer a better user experience. This rapid growth in devices will lead to congested networks leading to the necessity of devices being able to function in the midst of increased traffic and interference. Failure to do this will lead to delayed responses which could prove to be fatal. Suggested solutions The best solution for this issue is found in the evaluation process and supporting test methods that the Institute of Electrical and Electronics Engineers (IEEE) published in the American National Standard for Evaluation of Wireless Coexistence (ANSI). This process addresses the interconnectivity issues present in radio frequency environments. The outlined process involves defining the environment and evaluating the wireless performance of the equipment through thorough testing. An in-depth version can be found in its entirety online. Increasing the longevity of devices IoT devices are being used in vital industries such as healthcare and automotive so battery life and power consumption are two challenges that engineers must take seriously. A failure in this area could potentially lead to loss of life or safety concerns on the road. As new firmware and software are being designed to address these factors, engineers must be implementing them into IoT devices with the ability to be continually updated. Suggested solutions Longevity should be addressed in all aspects of the design process and tested thoroughly using a wide range of currents. By doing this, an engineer can simulate consumer applications to best predict performance. Security Security and privacy are concerns with any technology, but with the use of IoT in medical devices, it’s paramount Security has been a controversial issue for IoT since its inception. Security and privacy are concerns with any technology, but with the widespread use of IoT in medical devices, smart home appliances, and access control and surveillance, it’s paramount. For example, medical devices may store information about health parameters, medications, and prescriber information. In some cases, these devices may be controlled by an app, such as a smart pacemaker, to prevent heart arrhythmias. Naturally, a security issue in these devices could be devastating. Another example of dangerous security concern is with surveillance cameras and access control, such as for home or business security systems. These intelligent door locking systems contain locks, lock access controllers, and associated devices that communicate with each other. Suspicious activities are flagged with alerts and notifications, but if a hacker gains access, it can lead to real-world, physical danger. Security design points Here are some key points for security design: Physical security: IoT devices may be in external, isolated locations that are vulnerable to attack from not only hackers but by human contact. Embedding security protection on every IoT device is expensive, but it’s important for general security and data safety. Security of data exchange: Data protection is also important because data gets transmitted from IoT devices to the gateway, then onto the cloud. With surveillance and access control information or sensitive medical information, and encryption is vital to protecting data from a breach. Cloud storage security: Similar to data exchange, the information stored in medical devices, surveillance and access control systems, and some smart appliances with payment features, must be protected. This includes encryption and device authentication through access control, which can police what resources can be accessed and used. Update: Security vulnerabilities will always occur, so the key to addressing them is having a plan to address errors and release patches. Customers should also have options to secure devices quickly and effectively. Suggested solutions Engineers can include security and protection into IoT devices with early and perpetual testing throughout the design process. Most security breaches occur at endpoints or during updates, giving engineers a starting point for how to address them. Creating more secure devices Ensuring the security of connected devices should be of supreme importance for engineers as these devices are vulnerable to security breaches. The ultimate security of devices goes beyond the scope of engineering as the network and enterprise levels must also be secure to protect against potential threats. However, engineers play a role in this protection as well and should consider device security in the design process. Suggested solutions On a device level, engineers can help protect IoT devices from vulnerabilities by implementing early testing and continuing it throughout the design process. Most security transgressions occur at endpoints so this continual testing can, and should, create barriers to breaches. Regulations and compliance For IoT engineers, the complex web of regulations and compliance standards present new challenges Regulations and compliance surrounding data and technology are nothing new, but for IoT engineers, the complex web of regulations and compliance standards present new challenges. Engineers are already addressing obstacles in security and connectivity, all while meeting deadlines, and working around regulations adds time and expense to the process. Unfortunately, a failure to comply with global, regional, or local laws can lead to setbacks and fines. In addition to time lost in production and possible fines, the damage to a company’s reputation can lead to even more losses. Suggested solutions Compliance should be considered early and often in the design process. In the early stages of development, the IoT device or components can be tested to address and compliance issues. If possible, use a scalable and automated test system. The comprehensive solution As we stare at an uncertain future full of possibilities, it’s clear to see that new challenges will continue to be presented as technology evolves and new innovative devices are designed by engineers. By addressing these issues early and often, solutions can be implemented and problems prevented before they even have a chance to occur thanks to sound engineering and solid design.

Everbridge provides the critical event management platform to help organisations manage the full lifecycle of a crisis
Everbridge provides the critical event management platform to help organisations manage the full lifecycle of a crisis

The UK Government is consulting on plans to introduce a new law requiring operators of public spaces to consider the risk of a terrorist attack and take proportionate and reasonable measures to prepare for and protect the public from such an attack. Under the proposals outlined in the consultation document, those responsible for a publicly accessible location will have a ‘protect duty.’ The protect duty would apply to certain publicly accessible locations, widely defined as ‘any place to which the public or any section of the public has access, on payment or otherwise, as of right or by virtue of express or implied permission.’ Publicly accessible locations Publicly accessible locations include a wide variety of everyday locations such as: Sports stadiums, festivals and music venues, hotels, public houses, clubs, bars, casinos, high streets, retail stores, shopping centres, markets, schools, universities, medical centres, hospitals, places of worship, government offices, job centres, transport hubs, parks, beaches, public squares, other open spaces. This list is by no means exhaustive, but it does demonstrate the diverse nature of publicly accessible locations. To manage these challenges, some organisations are relying on guarding and manual solutions or processes Organisations responsible for publicly accessible locations have many challenges they need to overcome while at the same time ensuring that safety and security is visible, yet non-intrusive. To manage these challenges, some organisations are relying on guarding and manual solutions or processes, whereas other organisations have invested heavily in diverse security technologies: CCTV, access control, intruder alarms, fire detection, intercoms and more. Managing public safety Effectively managing public safety and security is difficult and can be costly. Potential liabilities are something to seriously consider, based on forthcoming regulation and prevailing public expectations. When a critical event unfolds public reactions can be difficult to safely manage, however this is now a must do. Public space operators need to get the right information to the right people at the right time to protect all people, including every single member of the public. Their work with public and private sector clients around the world has enabled them to understand ‘protecting the public’ challenges and offer solutions that meet the specific requirements. Public space operators and organisations must keep track of all emerging threats and assess the potential impacts of when, not if, they will experience a critical event. Unpredictable threat environment Security executives have the challenge of protecting people, facilities and assets With an increasingly complex and unpredictable threat environment, it has never been more imperative to act faster. With more complete intelligence, organisations can increase their speed and decisiveness to assess risks and prevent those risks from harming people or disrupting operations. Leisure and entertainment is a prominent UK industry, that is also one of the most vulnerable to safety and security threats. Security executives have the challenge of protecting people, facilities and assets, while also maintaining friendly and welcoming services to visitors. Public venues and retailers must provide non-intrusive client safety and security. For the would-be criminal, safety and security provision should be a visible deterrent. Balancing these needs is where Everbridge can help organisations. Everbridge provides the critical event management platform to help organisations manage the full lifecycle of a crisis. Facilitating device activation Their platform correlates events from disparate safety and security systems into a common operating picture to focus people’s attention on what really matters. The platform provides users with actionable alerts, next step actions, and automated reporting to better manage risks, ensure compliance with operating procedures and support the business continuity. Automated workflows ensure rapid, consistent responses, reducing the risk of human error Automated workflows ensure rapid, consistent responses, reducing the risk of human error. It also facilitates device activation to ensure they are always in operational control and protecting the people. Dynamic reports and dashboards provide real-time actionable insights for the operations teams and senior executives. Benefits include: Real-time situational awareness. Reduces risk. Accelerates response times. Avoids technology lock-ins. Prevents information overload. Keeps stakeholders informed. With Everbridge, the organisation can deliver the public protect duty. Now and in the future.