Bosch introduces new VIP X series of IP network video encoders and decoder
Bosch introduces new VIP X series of IP network video encoders and decoder

Bosch Security Systems’ new VIP X series of IP network MPEG-4 video encoders and decoder offer 4CIF real-time video using less than half the bandwidth and storage space of earlier models. At a maximum frame rate of 30 frames/s, the series’ high-resolution real-time MPEG-4 compressed video offers virtually the same quality as the more space-hungry MPEG-2 compression.  The Flexible MPEG-4 compression algorithm also gives users the choice of different frame rates, ranging from 1 up to the maximum of 30 frames/s, to optimise bandwidth and storage space. The VIP X encoders offer dual-streaming capability which enables them to provide two parallel digital video streams encoded with different video quality settings.  The VIP X1 offers full-motion video for a single camera, while the VIP X2 works with two cameras and offers greater convenience, cost-savings and ease of installation than a separate encoder for each camera.  Both encoders also feature fully-interlaced video, alarm inputs and relay outputs, and pan/tilt/zoom control.The new high-performance Single/Quad Stream VIP XD decoder allows video to be received and displayed on analog or computer VGA monitors.  The cost-effective design features a robust MPEG-4 engine to convert high-quality 4CIF resolution digital-video streams at up to 30 frames/s into analog video for viewing.  The decoder can decode up to 4 streams at once, delivering a quad view on the operator’s monitor. The VIP XD is definitely the most powerful decoder in Bosch’s family of IP products and is compatible with all VIP and VideoJet encoders.   These products are ideal for a wide range of security applications where the highest quality video is needed, bandwidth is limited and storage needs to be saved. Reduced data storage and system costs Seamless integration with existing analog systems Highest resolution video for half the storage (compared with MPEG-2) Single/Quad stream decoding

Add to Compare
Bosch's new VIP X1600 XF series offers decoding as well as encoding functionality
Bosch's new VIP X1600 XF series offers decoding as well as encoding functionality

Multichannel encoders plus new decoder module capable of decoding MPEG-4 and MPEG-2 video streams Second-generation VIP X1600 XF base unit with conventional and fibre network capabilities Bosch Security Systems has added important enhancements to its VIP X1600 video-over-IP series which as well as video encoding functionality now also provides video decoding functionality.  In the VIP X1600 XF series, Bosch has introduced a new switch platform in the rack-mount base unit that accommodates multichannel video and audio encoder modules as well as the new VIP X1600 XFMD decoder modules.  Bosch has also introduced several other enhancements in the VIP X1600 XF base unit.  The two 1 Gbps Ethernet ports on the front of the base unit, originally included to provide network port redundancy, are now supplemented by an additional 1 Gbps Ethernet port on the rear.  This provides a greater choice of network connectivity and allows for easier inside-rack cabling like, for example, direct connection to an iSCSI storage array (Internet Small Computer System Interface).  The new base unit also features a 1 Gbps small form factor pluggable (SFP) optical transceiver slot on the front to enable direct fibre connection to a remote Storage Area Network. As with the original series, the VIP X1600 XF base unit can accommodate up to four encoder modules, with each four analogue video inputs or combined analogue video/audio inputs and redundant power supply.  Additionally, the VIP X1600 XF base unit can accommodate up to four of the new VIP X1600 XFMD multichannel decoder modules featuring four analogue video outputs plus bi-directional audio. Encoder and decoder modules can be mixed and matched within the base unit and the modules are also "hot swappable", allowing modules to be added or exchanged at any time without interrupting transmission to the existing channels. Featuring four analogue BNC video outputs with bi-directional audio, the VIP X1600 XFMD decoder module is capable of decoding up to four MPEG-2 video streams without audio or up to 10 MPEG-4 video streams each at a maximum resolution of 4CIF@25/30 ips.  The decoder can also be set up to display 4 full screen video signals or 2 full screen and 2 quad views.  This allows the 10 MPEG-4 live video streams from a single decoder to be displayed on a compact monitor wall.  If 4 decoder modules are used, the system can serve a monitor wall of up to 16 analogue monitors displaying the live video from up to 40 cameras. Changing the setup and camera selection in small installations is easy with the decoder's highly intuitive web-based user interface (which can be accessed via a video management system).  The system administrator can set up a network scan to identify all cameras on the network, then assign the output of each camera to a specific analogue monitor using either on-screen selection buttons or a drag & drop function.  The interface also features an on-screen auto connect switch that allows the system configuration to be stored and automatically re-established in the event of a power cut to the system or in the event of any network failure.

Add to Compare
Bosch VIP X1 XF single-channel video encoder
Bosch VIP X1 XF single-channel video encoder

The Bosch VIP-X1XF Main Profile encoder delivers real-time H.264 compressed video over IP. Delivering two independent streams per camera, each stream delivers full frame rate at best quality and are adjustable to allow viewing and recording at different quality levels. Equipped with a hardware accelerator for Bosch IVA functions, VIP-X1XF takes Intelligence-at-the-Edge to the next level. Same bandwidth, twice the resolutionThe implementation of main profile encoding gives users the benefit of DVD image quality video (4CIF) at the same bandwidth as MPEG-4 half resolution video (2CIF)*. Furthermore Bosch's low latency implementation of this main profile technology offers all the compression benefits of live video without sacrificing image quality, for top-of-the-line H.264 implementation.Designed for IVADesigned for intelligence from the ground up, VIP-X1XF brings you virtually unlimited performance for best quality video at 25/30 images per second@4CIF and full Intelligent Video Analytics. Adding VIP-X1XF, complete with optional IVA licence, to your existing analogue cameras transforms them into powerful, automated detectors that help operators to stay focused. The encoder brings a new level of automation to your CCTV monitoring. Edge-based, real-time processing instantly identifies and warns security teams of alert conditions, giving them the information they need to act quickly.SD card and iSCI recordingRecord two video streams independently on different media. Video can be recorded centrally on iSCI drives managed by Bosch VRM (Video Recording Manager) and redundantly on local media. If networks fail, Bosch VRM fills in gaps in the central recording via automatic network replenishment (ANR).Bilinx supportWith built-in Bilinx support, VIP-X1XF ensures optimum investment protection when migrating to IP. Existing cameras can stay in place, remote configuration functions and PTZ controls keep working without extra cabling, simply connect the coax to the encoder and its done.BenefitsUltra compact size for easy installation close to the cameraH.264 Main Profile encoding for double the resolution with the same bandwidth requirement*Two independent IP video streams per channel allow viewing and recording at two different quality levels ONVIF compliant, compatibility between manufacturers provides customers with open systemsDesigned for IVA, transforms your analogue cameras into powerful automated detectorsCompatible with Bosch Forensic Search which allows you to scan hours of video in just secondsSet adjustable privacy masks, a major benefit for urban surveillance applicationsDirect to iSCI recording and Bosch VRM support eliminates the need for NVR's, significantly reducing cost of ownershipBosch ANR support enables video recording even during network outages * In comparison to MPEG-4, depending on scene and quality settings    

Add to Compare

Browse Video Servers (IP Transmission) / Video Encoders

Video servers (IP transmission) - Expert commentary

Video surveillance technologies evolve to meet data and cybersecurity challenges
Video surveillance technologies evolve to meet data and cybersecurity challenges

The Internet of Things (IoT) is having a significant and ever-changing impact on the way we view video security. Today, cameras are expected to be so much more than devices with which to simply capture images; they need to be far smarter than that. These future-facing cameras are becoming an integral part of the vast digital connectivity infrastructure, delivering a parallel performance as intelligent sensors with the ability to extract the kind of invaluable data that helps businesses make improvements in the area of video security, and beyond. However, as the list of possibilities grows, so too does the risk of unauthorised access by cybercriminals. We should all be aware that a single weak link in a communications infrastructure can give hackers access to sensitive data. That’s the bad news. Safeguarding data and utilising deep learning The good news is cybercrime can be avoided by employing a data security system that’s completely effective from end-to-end. One technological advancement that the trend-spotters are predicting will become part of the video security vocabulary is ‘deep learning’ Once this level of safeguarding is in place you can begin to confidently explore the technologies and trends happening now, and those on the horizon. So, what will be having an influence on surveillance in 2018? Well, according to IHS Markit, one technological advancement that the trend-spotters are predicting will become part of the video security vocabulary is ‘deep learning’, which uses algorithms to produce multiple layers of information from the same piece of data, therefore emulating the way the human brain absorbs innumerable details every second. In Europe, GDPR compliance will also be a big talking point as new principles for video surveillance data collection, use limitation, security safeguards, individual participation and accountability are introduced. And, as the popularity – and misuse – of drones continues to rise, the recent developments in drone detection technology will be particularly welcomed by those whose primary concern relates to large areas, such as airport perimeter security. The future of 'smart' video analytics An important feature of today’s intelligent cameras is the ability to provide smart video analytics. The Bosch ‘i’ series, for example, offers a choice of formats – Essential Video Analytics and Intelligent Video Analytics. Essential Video Analytics is geared toward regular applications such as small and medium businesses looking to support business intelligence (e.g. inter-network data transfer), large retail stores and commercial buildings for advanced intrusion detection, enforcing health and safety regulations (no-parking zones or detecting blocked emergency exits) and analysing consumer behaviour. The camera-based, real-time processing can also be used to detect discarded objects, issue loitering alarms and detect people or objects entering a pre-defined field. Intelligent Video Analytics provides additional capabilities. It is designed for demanding environments and mission-critical applications, such as the perimeter protection of airports, critical infrastructures and government buildings, border patrol, ship-tracking and traffic-monitoring (e.g. wrong-way detection, traffic-counts and monitoring roadsides for parked cars: all vital video security solutions). An important feature of today’s intelligent cameras is the ability to provide smart video analytics Intelligent Video Analytics can also differentiate between genuine security events and known false triggers, such as challenging environments created by snow, wind (moving trees), rain, hail, and water reflections. For more expansive areas, like an airport perimeter fence, the system has the range and capability to provide analysis over large distances. And, if a moving camera is employed, it is also possible to capture data on objects in transit when used in conjunction with the Intelligent Tracking feature. For roadside use, Intelligent Video Analytics systems, such as the Bosch MIC IP range, are resistant to vibrations and can still operate in extreme weather conditions, continuing to detect objects in heavy rain or snow.  Evolving cameras past surveillance It’s becoming ever clearer that the IoT is transforming the security camera from a device that simply captures images, into an intelligent sensor that plays an integral role in gathering the kind of vital business data that can be used to improve commercial operations in areas beyond security. For example, cities are transitioning into smart cities. The capabilities of an intelligent camera extend to the interaction and sharing of information with other devices (only those you have appointed) With intelligent video security cameras at the core of an urban infrastructure smart data can be collected to optimise energy consumption via smart city lighting that responds to crowd detection and movement. Cameras can also be used to improve public transport by monitoring punctuality and traffic flow based on queue lengths, with the ability to control traffic lights an option should a situation require it. As the urban sprawl continues and this infrastructure grows, the need for more knowledge of its use becomes more essential, necessitating the monitoring technology developed for use by human operators to evolve into smart sensing technology, that no longer just provides video feeds, but also uses intelligent analytics and sophisticated support systems. These systems filter out irrelevant sensor data and present only meaningful events, complete with all relevant contextual data to operators to aid their decision-making. Expanding the video security camera network Today, video analytics technology has tangible benefits for human operator surveillance, and delivers KPIs that are highly relevant to transport operators, planners and city authorities. As an existing infrastructure, a video security camera network can be improved and expanded by installing additional applications rather than replaced. From a business perspective, that means greater value from a limited investment. Thereafter, the capabilities of an intelligent camera extend to the interaction and sharing of information with other devices (only those you have appointed), image and data interpretation, and the ability to perform a variety of tasks independently to optimise both your safety and business requirements. The fact is, cameras see more than sensors. Sounds obvious, but a conventional sensor will only trigger an alarm when movement is detected, whereas a camera can also provide the associated image and information like object direction, size, colour, speed or type, and use time stamps to provide historical information regarding a specific location or event. Based on this evidence, the video security camera of today is more than ready for the challenges of tomorrow.

Live-streaming mobile surveillance takes cameras to the action
Live-streaming mobile surveillance takes cameras to the action

Video surveillance across the world is growing exponentially and its major application is in both public safety and law enforcement. Traditionally, it has been fixed surveillance where cameras provide live streams from fixed cameras situated in what is considered strategic locations. But they are limited in what they can see given by their very definition of being "fixed." The future of video surveillance includes the deployment of more mobile video surveillance with the benefits it offers. Instead of fixed cameras, this is the ability to live stream from mobile devices on the move such as body-worn cams, drones, motorbikes, cars, helicopters and in some cases, even dogs!Sending drones into the air, for example for missing people or rescue missions, is much more cost-effective than deploying helicopters Advantages of mobile surveillance The advantage of mobile surveillance is that the camera can go to where the action is, rather than relying on the action going to where the camera is. Also, sending drones into the air, for example for missing people or rescue missions, is much more cost-effective than deploying helicopters. The ability to live stream video from cars and helicopters in high-speed pursuits can be used to take some of the operational issues from the first responders on the ground and share that “life and death” responsibility with the operational team leaders back in the command centre. This allows the first responders in the pursuit vehicle to focus on minimising risk while staying in close proximity of the fleeing vehicle, with direction from a higher authority who can see for themselves in real time the issues that are being experienced, and direct accordingly. In addition to showing video live stream from a pursuit car or motorcycle, by using inbuilt GPS tracking, the video can be displayed on a map in real time, allowing a command chief to better utilise additional resource and where to deploy them, through the use of displaying mapping information with real time video feed. It allows police chiefs to make better informed decisions in highly-charged environments. The 4G phone network can now be used with compressed video to live stream cost effectively Application in emergency situations The same is true of first responders in many different emergency situations. Mobile surveillance opens up a new area of efficiencies that previously was impossible to achieve. For example, special operations can wear action body-worn cameras when doing raids, fire departments can live stream from emergency situations with both thermal and daylight cameras, and paramedics can send video streams back to hospitals allowing doctors to remotely diagnose and prepare themselves for when patients arrive at the hospital. How can special operations and emergency first responders live stream video from a mobile camera with the issues of weight, reliability and picture-quality being considered? H265 mobile video compression Law enforcement insists on secure transmissions, and it is possible to encrypt video to the highest level of security available in the public domain The 4G phone network can now be used with compressed video to live stream cost effectively. The issue of course is that 4G is not always reliable. Soliton Systems has mitigated this risk of low mobile quality in certain areas, by building an H265 mobile video compression device that can use multiple SIM cards from different cellular providers simultaneously. H265 is the latest compression technique for video, that is 50% more effective than conventional H264, and coupling this with using multiple “bonded” SIM cards provides a highly reliable connection for live-streaming high-quality HD video. The 400-gram device with an internal battery can be connected to a small action cam, and can live-stream simultaneously over at least three different cellular providers, back to a command centre. Latency is typically less than a second, and new advance improvements are looking to reduce that latency further. Encrypted video transmission What about security? Law enforcement insists on secure transmissions, and it is possible to encrypt video to the highest level of security available in the public domain, i.e. AES256.What about integration into existing video infrastructure at the command centre? It is not untypical for a police force to have an existing video management system (VMS) at their command centre such as Milestone System’s Xprotect. The Soliton range of products are ONVIF-compliant, a standard used by video surveillance cameras for interoperability, allowing cameras and video devices that are ONVIF-compliant to simply “plug&play” into existing video management systems. These mobile transmitters are deployed with law enforcement and first responders across the globe. Their ability to provide secure, full HD quality and highly-reliable video streaming within a small unit, and to enable it to be integrated into the current eco-system that is already installed at the receiving end, has made them a favourite choice with many companies and government agencies.

Impact of sophisticated IT technologies on the security market
Impact of sophisticated IT technologies on the security market

Over the course of the past few months, I have discussed a myriad of topics, from Big Data, the Internet of Things and emerging video surveillance-use cases, to analytics, storage complexities and IT technologies like virtualisation and hyperconverged infrastructure (HCI). All of these trends have a significant effect on the security market, and in April they were highlighted in spades at ISC West. It’s great to talk about these trends but it’s far better to see how they are being leveraged in real-world applications. That’s really where we can all see the true value of new solutions and concepts. We’re lucky enough to work with some leading organisations that want others to benefit from their experience and I’m happy to have the opportunity to share two of these applications with you. Protecting educational facilities UCF has adopted advancements in technology, particularly video surveillance solutions, to help ensure stronger security on campus Educational institutions face an increasingly complex risk environment. Recent high-profile incidents emphasise these risks and magnify the vulnerabilities that educational facilities face. These incidents have led to more public demand for improved security solutions across campuses. The primary mission of these organisations is to deliver quality education to students, and they face the challenge of balancing between a highly secure facility and one that supports open interaction. The University of Central Florida is no different. This organisation, one of the largest universities in the country, has adopted advancements in technology, particularly video surveillance solutions, to help ensure stronger security on campus. Active shooter incidents In March 2013, UCF faced an active shooter situation in which a former student planned to pull the fire alarm in a residence hall and then attack his classmates as the building was evacuated. However, the shooter’s gun jammed, and as officers were closing in on the gunman, he took his own life. During the university’s response to the incident, accessibility to critical video data was a major issue. Educational institutions face an increasingly complex risk environment UCF had cameras in the area where the incident took place, but first responders had no way of viewing the footage without being at the physical location of the video recorder. At the time, UCF had a wide variety of standalone systems in place, including non-integrated video surveillance, access control and intrusion systems. As a result, there was no way to centralise video management, viewing and analysis. Upgrading from analogue systems Altogether, its security system consisted of older analogue platforms that were reaching end of life, 58 standalone servers, 12,000 access points and a wide variety of DVRs — all being managed in a siloed manner. UCF needed a solution that would allow officials to centralise system management, store video data more effectively and reliably, and enable the security team to deliver situational awareness to responders when needed. Security leaders sought a way to further modernise its security, surveillance, access control and IT infrastructure The university deployed an HCI solution, one that is optimised for demanding, data-intensive workloads like video surveillance. Using standard off-the-shelf server hardware, the system aggregates the storage and compute resources from multiple servers into a single unified pool that all cameras can access, which maximises performance and storage capacity utilisation. The platform also hosts the university’s video management solution, which serves as a centralised source to manage video and effectively protect its security data. Because of the growing demand for video across UCF's campuses — for both safety and business purposes — the HCI solution’s ability to eliminate the opportunity for data loss and easily scale were key components in its selection. Protecting air travel and airports In 2012, Charleston International Airport embarked on an ambitious upgrade project dubbed the Terminal Redevelopment and Improvement Program. The $200 million initiative was designed to modernise and expand the facility to meet increased passenger demand. While the aesthetics and amenities of the airport were under construction, security leaders sought a way to further modernise its security, surveillance, access control and IT infrastructure. The IT and security teams needed to address the challenges of their existing standalone server environment, which included siloed systems, management complexity and high administrative and equipment costs. Charleston International Airport embarked on an ambitious upgrade project dubbed the Terminal Redevelopment and Improvement Program Considering the high value of the airport’s video, security and IT data, it required a solution that could deliver reliable data protection, system resiliency and fault tolerance. The airport is required to store video for 30 days, but it seeks to expand its retention time to 60 days. Therefore, technology that can scale simply was key in the selection process. Storage system updates It also required a storage platform that could manage the demanding and write-intensive nature of its nearly 250 IP surveillance cameras — a challenging task for traditional video recorders. The airport deployed HCI appliances to better manage captured video data and expand its archive capability for video surveillance. Users rely on video to validate whether something did or did not happen - and this is essential in airports HCI surveillance solutions are designed to provide industry-leading resiliency. Even if multiple hardware failures occur, including an entire appliance, video management servers will remain online and recording, and any previously recorded video will continue to be protected and accessible. Reducing expenses and costs The solution also reduced total cost of operations by consolidating servers, storage and client workstations into one enterprise-class solution that is easily managed from a single user interface, without the need for specialised IT skills. These use cases demonstrate the value emerging technologies bring to these types of modern environments. And they show that solutions like HCI are no longer simply much-talked about technology trends. Video, IT and security data is critical to organisations of all types and they need to ensure their investment in capturing this data is protected. From a security standpoint, users rely on video to validate whether something did or did not happen. If that video data isn’t protected, they lose a very valuable investigative tool. That isn’t an option in today’s complex environment. That’s is why it is paramount to understand how new technologies can help expand current capabilities and evolve security operations. This can’t be left to chance.