Euro 2016 football tournament is taking place at 10 stadiums across France
No matter how strong the security planning, it will take only one small failure to
create an opportunity for unimaginable events
(Photo credit: Marco Iacobucci EPP /

Successful security at UEFA Euro 2016 may well depend on the ability of the French to bring cohesiveness to disparate technologies. Given the scale of the threats, a variety of security solutions are being used visibly and behind the scenes – in addition to the presence of 90,000 police, gendarmerie and uniformed soldiers.

I can’t remember an event where there has been a greater need for multi-agency working than the Euro 2016 football tournament now taking place at 10 stadiums across France, a country still recovering from the Paris attacks in November, torn apart by ethnic tensions, and in the grip of labour strikes. The security backdrop to the tournament is already dampening what should be a joyous festival for 2.5 million spectators watching the 51 matches over four weeks. Despite the comprehensive resources available to France and her neighbours, I see little cause for optimism.

Security communications

Starting at a macro level, there will be an enormous signals intelligence (SIGINT) operation in an attempt to intercept and analyse information from suspected terrorist cells, potential “lone wolf” jihadists and anybody whose communications arouse suspicion. The French government has been fighting a protracted battle to have voice over Internet protocol (VoIP) communication services (notably Skype, which is a known favourite of terrorists) registered as telecoms operators and thus subject to stricter regulation. 

The French government has been
fighting a protracted battle to have
VoIP communication services
registered as telecoms operators
and thus subject to stricter regulation

Internet communication may yet solve rather than cause problems during the tournament with the release of a mass notification phone App. In the event of an attack, the App will alert users on a geo-location basis and in a discrete manner should they be near an incident. Users will also be able to pre-program up to eight geographical zones that they might be visiting in order to receive context-specific information and advice on how to minimise risk.

Hooligans distract police attention from terrorism

During the first weekend, the tournament was already marred by fighting between Russian and English fans (with involvement from locals) in the port of Marseille, where tear gas and water cannon have been deployed. An England supporter is critical after suffering a heart attack while being beaten senseless. UK politicians have been quick to denounce these incidents but also to make the broader point that hooliganism distracts French police from vigilance against terrorism.

The England vs Russia game in Marseille has thrown up concerns at many levels. Toward the end of the match, Russian fans donned gum shields and martial arts gloves, turned their t-shirts into masks and charged English fans including family groups who were forced to jump over perimeter barriers with 10-foot drops in order to escape. Neutral observers complained about a lack of police presence and ineffective stewarding.

Inappropriate security scanning

As if this wasn’t bad enough, Russia’s equalising goal in the final minutes saw one of their supporters using a flare gun. Yes, a flare gun, which is larger than a handgun. This was accompanied by smoke bombs. A photo is doing the media rounds of a Russian holding two flares, each the size of a Coke bottle. One doesn’t have to speculate long on what might have happened if these containers were filled with plastic explosives.

Russia’s equalising goal in the final minutes saw one of their supporters using a flare gun
During the first weekend, the tournament was already marred by fighting between Russian and English fans
(Photo credit: Marco Iacobucci EPP /

Am I alone in thinking that terrorists, seeing how lax security must be at the Stade Vélodrome, may be tempted to smuggle in more sophisticated explosives? The presence of the fireworks is doubly embarrassing since security at the Stade de France failed miserably in May during a domestic cup final when dozens of firecrackers were brought into the ground despite what was claimed to be vigilant searching of fans.

Debate over fan zone

The French are flexing their technological muscle and have made much of the fact that there is anti-drone technology at the 90,000-capacity fan zone beneath the Eiffel Tower. This is to guard against a possible terrorist “spectacular” such as a chemical or biological attack of the kind hinted at in data found on a laptop used by Paris attacker Salah Abdeslam. The future of the fan zone is uncertain. Former president Nicolas Sarkozy sees it as a sitting duck for a terrorist attack and has asked for it to be scrapped while police chief Michel Cadot wants it to operate only during games played outside the two Parisian stadiums.

Am I alone in thinking that
terrorists, seeing how lax
security must be at the Stade
Vélodrome, may be tempted to
smuggle in more sophisticated

Generally, the French government prefers a concentration of fans rather than dispersed groups. Of course, commerce should not be a factor, but there will inevitably be behind-the-scenes pressure from advertisers to retain fan zones since their merchandising potential is enormous. If they go ahead, the zones will feature CCTV surveillance, bag searches and even body-frisking should police suspicions be aroused.

Conducting mock disaster drill to improve emergency response

I recently reported on a disaster scenario exercise in London, and the French are conducting exhaustive equivalents in order to test response techniques should there be an attack at a stadium or fan zone. One such operation saw volunteers pretend to be fans at a mocked-up Northern Ireland vs Ukraine game in Lyon where actors, pretending to be jihadists, conducted a suicide bombing. Other drills have simulated chemical attacks, and in Nîmes over 1,000 cadet police officers acted out the role of spectators at a fan zone while colleagues in protective clothing went through decontamination routines.

Violence likely to overshadow Russia vs. Ukraine match

In terms of fan behaviour, what are the upcoming games with the most potential for violence? Turkey vs Croatia has passed off peaceably despite grave concerns. One nightmare scenario that UEFA must be dreading is if Russia were to come top of their group and Ukraine qualify as a third-placed team. Then the tournament has the prospect of the two sides meeting in Paris. Anybody who thinks this would be a sporting contest is misguided. The game would be a hate-filled microcosm of the recent Russian annexation of Crimea and the war in east Ukraine.

No matter how much planning and technology the French authorities have at their disposal, it will take only one small failure to create an opportunity for unimaginable events. All we can hope is that sport will soon disappear from the front pages of our newspapers and be relegated to the back with the tournament remembered for sporting achievement rather than security lapses.

Read more about security at UEFA Euro 2016 here


Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Jeremy Malies European Correspondent,

Jeremy Malies is a veteran marketeer and writer specialising in the physical security sector which he has covered for 20 years. He has specific interests in video analytics, video management, perimeter intrusion and access control.

In case you missed it

New markets for AI-powered smart cameras in 2021
New markets for AI-powered smart cameras in 2021

Organisations faced a number of unforeseen challenges in nearly every business sector throughout 2020 – and continuing into 2021. Until now, businesses have been on the defensive, reacting to the shifting workforce and economic conditions, however, COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalisation plans. This is now giving decision-makers the chance to take a proactive approach to mitigate current and post-pandemic risks. These long-term technology solutions can be used for today’s new world of social distancing and face mask policies and flexibly repurposed for tomorrow’s renewed focus on efficiency and business optimisation. For many, this emphasis on optimisation will likely be precipitated by not only the resulting economic impacts of the pandemic but also the growing sophistication and maturity of technologies such as Artificial Intelligence (AI) and Machine Learning (ML), technologies that are coming of age just when they seem to be needed the most.COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalisation plans Combined with today’s cutting-edge computer vision capabilities, AI and ML have produced smart cameras that have enabled organisations to more easily implement and comply with new health and safety requirements. Smart cameras equipped with AI-enabled intelligent video analytic applications can also be used in a variety of use cases that take into account traditional security applications, as well as business or operational optimisation, uses – all on a single camera. As the applications for video analytics become more and more mainstream - providing valuable insights to a variety of industries - 2021 will be a year to explore new areas of use for AI-powered cameras. Optimising production workflows and product quality in agriculture Surveillance and monitoring technologies are offering value to industries such as agriculture by providing a cost-effective solution for monitoring of crops, business assets and optimising production processes. As many in the agriculture sector seek to find new technologies to assist in reducing energy usage, as well as reduce the environmental strain of modern farming, they can find an unusual ally in smart surveillance. Some niche farming organisations are already implementing AI solutions to monitor crops for peak production freshness in order to reduce waste and increase product quality.  For users who face environment threats, such as mold, parasites, or other insects, smart surveillance monitoring can assist in the early identification of these pests and notify proper personnel before damage has occurred. They can also monitor vast amounts of livestock in fields to ensure safety from predators or to identify if an animal is injured. Using video monitoring in the growing environment as well as along the supply chain can also prove valuable to large-scale agriculture production. Applications can track and manage inventory in real-time, improving knowledge of high-demand items and allowing for better supply chain planning, further reducing potential spoilage. Efficient monitoring in manufacturing and logistics New challenges have arisen in the transportation and logistics sector, with the industry experiencing global growth. While security and operational requirements are changing, smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye, but have a significant impact on the overall customer experience. Smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye. Video analytics can assist logistic service providers in successfully delivering the correct product to the right location and customer in its original condition, which normally requires the supply chain to be both secure and ultra-efficient. The latest camera technology and intelligent software algorithms can analyse footage directly on the camera – detecting a damaged package at the loading dock before it is loaded onto a truck for delivery. When shipments come in, smart cameras can also alert drivers of empty loading bays available for offloading or alert facility staff of potential blockages or hazards for incoming and outgoing vehicles that could delay delivery schedules planned down to the minute. For monitoring and detecting specific vehicles, computer vision in combination with video analysis enables security cameras to streamline access control measures with license plate recognition. Smart cameras equipped with this technology can identify incoming and outgoing trucks - ensuring that only authorised vehicles gain access to transfer points or warehouses. Enhance regulatory safety measures in industrial settings  Smart surveillance and AI-enabled applications can be used to ensure compliance with organisational or regulatory safety measures in industrial environments. Object detection apps can identify if employees are wearing proper safety gear, such as facial coverings, hard hats, or lifting belts. Similar to the prevention of break-ins and theft, cameras equipped with behaviour detection can help to automatically recognise accidents at an early stage. For example, if a worker falls to the ground or is hit by a falling object, the system recognises this as unusual behaviour and reports it immediately. Going beyond employee safety is the ability to use this technology for vital preventative maintenance on machinery and structures. A camera can identify potential safety hazards, such as a loose cable causing sparks, potential wiring hazards, or even detect defects in raw materials. Other more subtle changes, such as gradual structural shifts/crack or increases in vibrations – ones that would take the human eye months or years to discover – are detectable by smart cameras trained to detect the first signs of mechanical deterioration that could potentially pose a physical safety risk to people or assets. Early recognition of fire and smoke is another use case where industrial decision-makers can find value. Conventional fire alarms are often difficult to properly mount in buildings or outdoor spaces and they require a lot of maintenance. Smart security cameras can be deployed in difficult or hard-to-reach areas. When equipped with fire detection applications, they can trigger notification far earlier than a conventional fire alarm – as well as reduce false alarms by distinguishing between smoke, fog, or other objects that trigger false alarms. By digitising analogue environments, whether a smoke detector or an analogue pressure gauge, decision-makers will have access to a wealth of data for analysis that will enable them to optimise highly technical processes along different stages of manufacturing - as well as ensure employee safety and security of industrial assets and resources. Looking forward to the future of smart surveillance With the rise of automation in all three of these markets, from intelligent shelving systems in warehouses to autonomous-driving trucks, object detection for security threats, and the use of AI in monitoring agricultural crops and livestock, the overall demand for computer vision and video analytics will continue to grow. That is why now is the best time for decision-makers across a number of industries to examine their current infrastructure and determine if they are ready to make an investment in a sustainable, multi-use, and long-term security and business optimisation solution.

Hikvision provides their security systems to enhance maintenance systems for Chaka Wind Farm
Hikvision provides their security systems to enhance maintenance systems for Chaka Wind Farm

Wind is a free and unlimited resource that provides potential energy toward the growing demand for clean, renewable power. In coastlines, islands, grasslands, mountainous areas, and plateaus that lack water, fuel, and convenient transportation, wind power poses a potential boon for addressing local challenges. Chaka Wind Farm is located on the Gobi Desert in Qinghai Province, China. At an altitude of 3,200 meters (nearly 2 miles), Qinghai has abundant wind energy reserves. Since its commissioning in December 2012, the energy-capturing capacity of the installed wind power turbines has reached 99 MW, while the annual average power generation is about 184 million kWh and the average annual utilisation hours are a mere 1,850 hours. Mechanical energy of rotation However, the plateau environment experiences squally winds all year round, and in severe cold winters the temperature often falls below minus 30° C! At those temperatures, the biting cold wind carries a severe risk of freezing for wind farm employees, and the harsh weather makes operation and maintenance extremely difficult. The difficulty lies in the fact that most of the wind farms are located in remote areas A wind turbine’s transmission system is composed of blades, hubs, main shafts, gear boxes, and couplings. Its main function is to convert the kinetic energy of wind into mechanical energy of rotation, then into electrical energy. As the key element in wind power, these wind turbines require routine maintenance. At present, maintenance relies mainly on the on-site staff climbing up the towers to check for and predict unit failures. However, the difficulty lies in the fact that most of the wind farms are located in remote areas. Personnel safety management When they rely solely on manual maintenance, the costs remain high enough to threaten the economics of the whole operation. Chaka Wind Farm hosts 62 wind towers, distributed across a wide 38,000 square meters (9.4 acres). This generous area creates a big challenge for maintenance staff who spend large amounts of time on transportation and logistics from tower to tower. Furthermore, according to the maintenance plan, workers have to climb each 80-meter-high wind tower for routine inspections each month. To solve these challenges, Hikvision provided a set of intelligent operation and maintenance systems for Chaka Wind Farm, including intelligent visual inspection equipment, personnel safety management, and real-time communication, providing a 24-hour online ‘Smart Examiner’ for the wind farm. Monitoring equipment temperatures Technicians at headquarters can remotely support personnel during on-site maintenanceFirst, for core unit components, thermal cameras are deployed in the wind turbine cabin to monitor equipment temperatures. This way, machine failures can be detected immediately, and staff can be automatically alerted when abnormal conditions (such as overheating) are found. In addition, with the wind towers located in the expansive Gobi Desert, unstable communications can leave operating personnel feeling disconnected. To resolve this, Hikvision’s one-key alarm intercom at the bottom of wind tower provides communication with the control center. Technicians at headquarters can remotely support personnel during on-site maintenance operations, assisting with diagnoses and repairs. Lastly, panoramic and thermal cameras and other equipment vastly expand the visual capabilities of the control centre. Staff can monitor the situation and various parameters around the wind turbines at all times. If an abnormality is found, they can immediately receive an alert from the system and identify specific problems. Engine room equipment “Originally, each wind turbine had to be inspected by staff members every month; climbing the towers was difficult and the risk factor was high. After the intelligent operation and maintenance system was installed, the engine room equipment on each tower can be inspected daily through the video system. Now each wind turbine only needs to be visited once every three months, and the frequency of climbing is reduced more than 60 percent,” said Sun, a technical operating engineer from Chaka Wind Farm. “More importantly, those problems that could only be discovered by personnel on the scene can now be identified by the intelligent operation and maintenance system – even proactive and early warnings of abnormal problems – which is a great help for our overall equipment operation and maintenance.”

Disruptive innovation providing new opportunities in smart cities
Disruptive innovation providing new opportunities in smart cities

Growth is accelerating in the smart cities market, which will quadruple in the next four years based on 2020 numbers. Top priorities are resilient energy and infrastructure projects, followed by data-driven public safety and intelligent transportation. Innovation in smart cities will come from the continual maturation of relevant technologies such as artificial intelligence (AI), the Internet of Things (IoT), fifth-generation telecommunications (5G) and edge-to-cloud networking. AI and computer vision (video analytics) are driving challenges in security and safety, in particular, with video management systems (VMSs) capturing video streams and exposing them to various AI analytics. Adoption of disruptive technologies “Cities are entering the critical part of the adoption curve,” said Kasia Hanson, Global Director, Partner Sales, IOT Video, Safe Cities, Intel Corp. “They are beginning to cross the chasm to realise their smart city vision. Cities are taking notice and have new incentives to push harder than before. They are in a better position to innovate.” “Safety and security were already important market drivers responsible for adoption of AI, computer vision and edge computing scenarios,” commented Hanson, in a presentation at the Milestone Integration Platform Symposium (MIPS) 2021. She added: “2020 was an inflection point when technology and the market were ripe for disruption. COVID has accelerated the adoption of disruptive technologies in ways we could not have predicted last year.” Challenges faced by cities Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018 Providing wide-ranging services is an expanding need in cities of all sizes. There are currently 33 megacities globally with populations over 10 million. There are also another 4,000 cities with populations over 100,000 inhabitants. Challenges for all cities include improving public health and safety, addressing environmental pressures, enabling mobility, improving quality of life, promoting economic competitiveness and reducing costs. Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018. Other challenges include air quality – 80% of those living in urban areas are exposed to air quality levels that exceed World Health Organization (WHO) limits. Highlighting mobility concerns is an eye-opening statistic from Los Angeles in 2017: Residents spent an average of 102 hours sitting in traffic. Smart technology “The Smart City of Today can enable rich and diverse use cases,” says Hanson. Examples include AI-enabled traffic signals to help reduce air pollution, and machine learning for public safety such as real-time visualisation and emergency response. Public safety use cases include smart and connected outdoor lighting, smart buildings, crime prevention, video wearables for field agents, smart kiosks and detection of noise level, glass breaks and gunshots. Smart technology will make indoor spaces safer by controlling access to a building with keyless and touchless entry. In the age of COVID, systems can also detect face mask compliance, screen for fever and ensure physical distancing. 2020 was an inflection point when technology and the smart cities market were ripe for disruption, Kasia Hanson told the MIPS 2021 audience. Video solutions Video workloads will provide core capabilities as entertainment venues reopen after the pandemic. When audiences attend an event at a city stadium, deep learning and AI capabilities analyse customer behaviours to create new routes, pathways, signage and to optimise cleaning operations. Personalised digital experiences will add to the overall entertainment value. In the public safety arena, video enables core capabilities such as protection of people, assets and property, emergency response, and real-time visualisation and increased situational awareness. Video also provides intelligent incident management, better operational efficiency and faster information sharing and collaboration. Smart video strategy Intel and Milestone provide video solutions across many use cases, including safety and security Video at the edge is a key element in end-to-end solutions. Transforming data from various point solutions into insights is complicated, time-consuming and costly. Cities and public venues are looking for hardware, software and industry expertise to provide the right mix of performance, capabilities and cost-effectiveness. Intel’s smart video strategy focuses around its OpenVINO toolkit. OpenVINO, which is short for Open Visual Inference and Neural network Optimisation, enables customers to build and deploy high-performing computer vision and deep learning inference applications. Intel and Milestone partnership – Video solutions “Our customers are asking for choice and flexibility at the edge, on-premises and in the cloud,” said Hansen in her presentation at the virtual conference. “They want the choice to integrate with large-scale software packages to speed deployment and ensure consistency over time. They need to be able to scale computer vision. Resolutions are increasing alongside growth in sensor installations themselves. They have to be able to accommodate that volume, no matter what causes it to grow.” As partners, Intel and Milestone provide video solutions across many use cases, including safety and security. In effect, the partnership combines Intel’s portfolio of video, computer vision, inferencing and AI capabilities with Milestone’s video management software and community of analytics partners. Given its complex needs, the smart cities market is particularly inviting for these technologies.