Video signal devices & accessories - Expert commentary

Radar technology provides an alternative for smart home security
Radar technology provides an alternative for smart home security

In the state of the residential security market today, we see many who are offering home security packages that rely on numerous sensors and multiple devices to provide a comprehensive coverage of the home and provide peace of mind. Each individual sensor or device within the package provides a specific functionality, and the user finds himself burdened by an overwhelming amount of sensors and devices. This overload is intensified by the penetration of additional IoT and smart devices into the home, such as pet-cams or smart speakers that add to the burden of installation and maintenance. In addition, we are witnessing the rise in popularity of DIY security devices, indicating that users are looking for models and technologies that provide both contract flexibility and simplicity of use. The past years have seen major advancements in radar technology, which have brought the formerly military technology into the consumer space. Radars provide interesting prospects for home security and smart homes due to several inherent characteristics which give it an advantage over existing technologies. The resolution of an advanced radar sensor enables not only presence detection, but also provides advanced features for security, automation and well-being Advanced security and automation features Of primary importance, a consumer designed radar sensor provides the user with full privacy, but the use of radar is also beneficial because it is indifferent to environmental, temperature and lighting conditions. In addition, radar signals (at certain frequencies) are capable of penetrating through almost any type of material, enabling concealed installation, robust monitoring in cluttered spaces and even the coverage of several separate rooms with only one device. In terms of capabilities, simple time of flight 2-antenna radar sensors, which have been around for a while, do not provide much additional value in comparison to existing solutions and are not necessarily competitive in terms of pricing. However, the new generation of radar sensors are also opening up new capabilities previously achieved with optics only. Today, the resolution of an advanced radar sensor is high enough to enable not only presence detection, but also to provide advanced features for security, automation and well-being, all in one. Imagine for example, that the security sensor installed in your elderly parent’s home could also detect a fall having occurred, monitor the breathing of a baby or even leaks in your wall. Due to the unique field of view that radar provides as well as the multi-functional potential, this technology will be the key to the awaited convergence of smart home functionalities and minimisation of home devices. The security sensor installed in your elderly parent’s home could also detect a fall having occurred Secret of the consumer radar A radar sensor’s accuracy and its ability to support wide functionality and applications is determined initially by its resolution, which is based on two key factors: bandwidth and number of channels. The wider the bandwidth and the more channels the radar supports, the more accurate the data received. Imagine the difference between a 1990s television model and a 4K 2018 television model - As the resolution is ever improving, the sharper and more detailed is the image. When looking at the short-range radar sensor market, prominent companies such as Texas Instruments and NXP are offering radar-on-chip solutions supporting 2\3 transmitters (Tx) and 3\4 receivers (Rx), mainly utilising frequency bands of 77-81GHz, as they target mostly automotive and autonomous driving applications. Another company that develops such radar-on-chip solution is Vayyar Imaging, an Israeli start-up, founded in 2011, that developed a radar sensor for 3D imaging. Vayyar Imaging directly targets the smart home and security markets with its radar-on-chip, developing modules and products for intruder detection, automation and elderly care (fall detection). Providing not only chips, but complete systems, the new model makes radar technology highly available and accessible. The radar-on-chip technology opens the door to installation of security and well-being devices in locations where privacy or environmental conditions pose an issue Radar-on-chip solution The radar-on-chip solution supports 72 full transceivers, an integrated DSP and radar bands between 3-81GHz. The resolution provided by this type of specification is high enough to provide subtle information about people’s real time location posture (lying down\falling\sitting\walking), and breathing, and enables to classify pets from humans, but it is low enough as to not compromise privacy. This type of technology opens the door to installation of security and well-being devices in locations where privacy or environmental conditions pose an issue, such as in bathrooms or heavily lit environments. Moreover, utilisation of this technology allows to dramatically minimise the numbers of sensors installed in the home, as it provides full home coverage with just one or two sensors and enables using the same HW to support additional capabilities such as breath monitoring, fall detection and highly accurate automation. Using AI and machine learning, the data derived by these sensors can be leveraged to provide smarter, verified alerts on the one hand and whole new insights on the on the other. The sensor can be tuned to learn the location of the house entrances or boundaries, where the inhabitants are expected to be at night, or where they should be expected to enter from into the home, adding new logics to the traditional yes\no decision making. Home security is widely regarded as a necessity, provides peace of mind to people and is integral to people's day to day lives Additional smart home services Among the evolving home technology verticals, security is by far the most relevant and integral to people’s day to day lives. Home security is widely regarded as a necessity and provides peace of mind to people. Being a legacy industry with many well-known and well-trusted brands, security players are well positioned to introduce new technology into the home and have the ability and credibility to expand their offerings to additional smart home services by utilising existing infrastructure and channels. With technology giants entering the security arena through the smart home door the DIY security solution market expected to explode with a CAGR of 22.4% (according to a report by Persistence Market Research). Now that new pricing and service models offer minimal commitment, traditional security players will need to step up. Security companies will need to explore new technologies and expand their offering if they intend to stay relevant and competitive in a market trending on functionality converge and minimisation of maintenance and installation costs.

Are your surveillance monitors prepared for the latest video technology developments?
Are your surveillance monitors prepared for the latest video technology developments?

Everybody has been hooked on the discussions about Analogue HD or IP systems, but shouldn’t we really be thinking about WiFi and 5G connectivity, removing the need for expensive cabling? Are wireless networks secure enough? What is the potential range? Even the basic question about whether or not the network is capable of transferring the huge (and growing) amount of data required for High Res Video, which will soon be quadrupled with the advent of 4K and higher resolutions. The future of video surveillance monitors We have seen a massive uptake in 4K monitors in the security industry. While they have been relatively common in the consumer market, they are only now beginning to really take off in the CCTV market, and the advances in Analogue HD and IP technology mean that 4K is no longer the limited application technology it was just a few years ago. Relatively easy and inexpensive access to huge amounts of storage space, either on physical storage servers or in the cloud, both of which have their own positives and negatives, have really helped with the adoption of 4K. Having said that the consensus seems to be, at least where displays are concerned, there is very little need for any higher resolution. So, where next for monitors in CCTV? 8K monitors are present, but are currently prohibitively expensive, and content is in short supply (although the Japanese want to broadcast the Tokyo Olympics in 8K in 2020). Do we really need 8K and higher displays in the security industry? In my own opinion, not for anything smaller than 100-150+ inches, as the pictures displayed on a 4K resolution monitor are photo realistic without pixilation on anything I’ve seen in that range of sizes. The consensus seems to be, at least where displays are concerned, there is very little need for any higher resolution Yes, users many want ultra-high resolution video recording in order to capture every minute detail, but I feel there is absolutely no practical application for anything more than 4K displays below around 120”, just as I feel there is no practical application for 4K resolution below 24”. The higher resolution camera images can be zoomed in and viewed perfectly well on FHD and 4K monitors. That means there has to be development in other areas. Developments in WiFi and 5G What we have started to see entering the market are Analogue HD and IP RJ45 native input monitors. Whilst you would be forgiven for thinking they are very similar, there are in fact some huge differences. The IP monitors are essentially like All-In-One Android based computers, capable of running various versions of popular VMS software and some with the option to save to onboard memory or external drives and memory cards. These are becoming very popular with new smaller (8-16 camera) IP installs as they basically remove the need for an NVR or dedicated storage server. Developments in the area of WiFi and 5G connectivity are showing great promise of being capable of transferring the amount of data generated meaning the next step in this market would maybe be to incorporate wireless connectivity in the IP monitor and camera setup. This brings its own issues with data security and network reliability, but for small retail or commercial systems where the data isn’t sensitive it represents a very viable option, doing away with both expensive installation of cabling and the need for an NVR. Larger systems would in all likelihood be unable to cope with the sheer amount of data required to be transmitted over the network, and the limited range of current wireless technologies would be incompatible with the scale of such installs, so hard wiring will still be the best option for these for the foreseeable future. There will be a decline in the physical display market as more development goes into Augmented and Virtual Reality Analogue HD options Analogue HD options have come a long way in a quite short time, with the latest developments able to support over 4MP (2K resolution), and 4K almost here. This has meant that for older legacy installations the systems can be upgraded with newer AHD/TVI/CVI cameras and monitors while using existing cabling. The main benefit of the monitors with native AHD/TVI/CVI loopthrough connections is their ability to work as a spot monitor a long distance from the DVR/NVR. While co-axial systems seem to be gradually reducing in number there will still be older systems in place that want to take advantage of the benefits of co-axial technology, including network security and transmission range. Analogue technologies will eventually become obsolete, but there is still much to recommend them for the next few years. Analogue technologies will eventually become obsolete, but there is still much to recommend them for the next few years Another more niche development is the D2IP monitor, which instead of having IP input has HDMI input and IP output, sending all activity on the screen to the NVR. This is mainly a defence against corporate espionage, fraud and other sensitive actions. While this has limited application those who do need it find it a very useful technology, but it’s very unlikely to become mainstream in the near future. Augmented Reality and Virtual Reality Does the monitor industry as a whole have a future? In the longer term (decades rather than years) there will definitely be a decline in the physical display market as more and more development goes into AR (Augmented Reality or Mixed Reality depending on who’s definition you want to take) and VR (Virtual Reality). Currently AR is limited to devices such as smartphones (think Pokémon Go) and eyewear, such as the ill-fated Google Glass, but in the future, I think we’ll all have optical implants (who doesn’t want to be The Terminator or RoboCop?), allowing us to see whatever we decide we want to as an overlay on the world around us, like a high-tech HUD (Heads Up Display). VR on the other hand is fully immersive, and for playback or monitoring of camera feeds would provide a great solution, but lacks the ability to be truly useful in the outside world the way that AR could be. Something not directly related to the monitor industry, but which has a huge effect on the entire security industry is also the one thing I feel a lot of us have been oblivious to is the introduction of quantum computers, which we really need to get our heads around in the medium to long term. Most current encryption technology will be rendered useless overnight when quantum computers become more widespread. So, where does that leave us? Who will be the most vulnerable? What can we do now to mitigate the potential upheaval? All I can say for sure is that smarter people than me need to be working on that, alongside the development of the quantum computer itself. Newer methods of encryption are going to be needed to deal with the massive jump in processing power that comes with quantum. I’m not saying it will happen this year, but it is definitely on the way and something to be planned for.

Networking basics for security professionals:  Transmission limitations
Networking basics for security professionals: Transmission limitations

Transmission of video and PoE power for IP security cameras over infrastructures can be confusing. Network infrastructures are designed using twisted pair cabling that we refer to as CAT (short for Category) cable, also referred to as UTP (Unshielded Twisted Pair). Security systems, coming from an analogue environment, have historically transmitted over coax cable, and with the use adaptors can transmit over CAT cabling, which can be further broken down into single pair twist and untwisted applications. Cabling shares one, often misunderstood commonality. Any physical medium has a form of resistance to any element carried on that cable. With regard to network transmission over CAT 5 and greater (5e, 6, 7), there is a distance limitation of 328 feet or 100 meters. The applicable standards state that the bandwidth applied at one end of the cable at 10/100/1000 (1G)Mbps will be realized at the other end. This is also where we find the first limitation. At this same 328-foot distance there is a loss of PoE power. 802.3af or 15.4 watts is a value realized only at the PoE source. Under the standard, after traveling through 328 feet, the power at the camera is 12.95 watts. The same is true for 802.3at which has a source power of 30 watts and 328-foot distance power of 25 watts. The advent of IP security cameras has resulted in the need to maintain existing coax cable for networking applications. The first thing to realise is there are no standards for network transmission over coax. In reality the characteristics governing coax can be considered the opposite of CAT twisted pair cable. CAT cabling for network transmission consists of 4 wire pair, 2 of which are used for signal and PoE transmission. This ability to separate PoE and bandwidth transmitting over two pairs maximises power transmission. Coax cable, when used in the same application, is limited to a single pair – centre conductor and shield. Its characteristics promote bandwidth but limit PoE transmission compared to UTP cable. I emphasize again, there are no standards for coax cable transmission. This process becomes more confusing when you realise there are various type of cables that are called either UTP or Coax. All of these cable have different characteristics that have a direct impact on their ability to transmit bandwidth and PoE. The standards for UTP transmission were set for CAT 5 (5e). Categories 6, 7 and above will tend to have lower cable resistance and longer transmission distance; CAT 3, higher resistance and shorter distance. Common types of coax cable have varying distance limitations The same applies to coax cable. Again there is no standard, the typical cable found in analogue security applications is RG-59. In general, application distance limitations ran between 750 to 1000 feet, greater than the 328 network limitation. This is why extenders are required to convert from coax to UTP and to extend the signal and power range. As with UTP cable, there are two similarities. First, there are different grades of coax; second, there are different types. All these differences generally apply to cable resistance and therefore distance performance.  The most common types of coax cable are: RG 59, RG 6 and RG 11 Why is this important? In general there are two reasons. The first is in specifying equipment for a video security system, you are generally dealing with existing wiring and a fixed performance requirement. It is important to know the type and condition of the wiring in order to know what system performance requirements can be met. Second is a function of understanding specifications for the transmission equipment that will be used in the infrastructure. As noted, when maintaining coax, the use of coax-to-Ethernet convertors/extenders is required. In many cases even when UTP is used, distances over the 328-foot limit are required. A manufacturer’s product specification sheet can truthfully state their products can perform at 100 Mbps, they can handle 802.3at 30 watts and they can transmit distances up to 6,000 feet. However these must be viewed as separate performance claims. The key word is separate. Notice in these statements there is nothing that ties 100Mbps and/or 30 watts (these are examples only) and claimed distance of 6,000 feet together. Neither is the type of cable used indicated. By themselves, each individual claim is truthful; however, applications require they work together, and this is usually not the case. Many times it is difficult to read between the lines of manufacturer’s specifications. Failure to do so can cost additional time, money and even lead to removing the infrastructure itself. There is a simple answer. Call the manufacturer and have them confirm that their solution will perform as required for your specific application. If necessary, ask for proof that they have conducted testing to support their performance claims. Infrastructure is confusing, and you don’t need to be an expert, you just need to ask the right person(s) the right questions.

Latest Bosch Security Systems news

Functionality beyond security: The advent of open platform cameras
Functionality beyond security: The advent of open platform cameras

The coronavirus (COVID-19) pandemic marks the biggest global disruption since World War II. While the ‘new normal’ after the crisis is still taking shape, consumers are apprehensive about the future. According to a recent survey, 60% of shoppers are afraid of going grocery shopping, with 73% making fewer trips to physical stores. Returning to the workplace is also causing unease, as 66% of employees report feeling uncomfortable about returning to work after COVID-19.  Businesses and employers are doing their best to alleviate these fears and create safe environments in and around their buildings. This also comes at tremendous costs for new safety measures and technologies – including updates to sanitation protocols and interior architecture – that protect against COVID-19. Costs in the billions that most businesses will face alone, without support from insurance and amidst larger macroeconomic challenges. Saving costs and increasing security But what if building operators, retail shop owners, and other stakeholders could save costs by leveraging new functionality from their existing security infrastructure? More specifically, expanding the use of current-generation security cameras – equipped with AI-driven image analysis capabilities – beyond the realm of security and into meeting new health regulations. This is exactly where video analytics algorithms come into play. And in the next step, a new evolutionary approach towards open security camera platforms promises new opportunities. Security cameras have evolved from mere image capturing devices into complex data sensors Over the past decade, security cameras have evolved from mere image capturing devices into complex data sensors. They provide valuable data that can be analysed and used in beneficial ways that are becoming the norm. Since 2016, Bosch has offered built-in Video Analytics as standard on all its IP cameras. On one hand, this enables automated detection of security threats more reliably than human operators. And on the other hand, video analytics collect rich metadata to help businesses improve safety, increase efficiency, reduce costs, and create new value beyond security. Expanding camera functionality beyond security Today, we have ‘smart’ security cameras with built-in video analytics to automatically warn operators of intruders, suspicious objects and dangerous behaviors. The rich metadata from several cameras on the same network can also be consolidated by making use of an intelligent software solution. It offers so-called pre-defined widgets to provide business intelligence by measuring area fill levels, counting building occupancy and detecting the formation of crowds. In combination with live video stream data, these insights enable heightened situational awareness to security operators. What’s more, operators are free to set their own parameters – like maximum number of occupants in a space and ‘off limit’ areas – to suit their needs. These user-centric widgets also come in handy in dealing with the coronavirus pandemic. Specific widgets can trigger an alarm, public announcement or trigger a 'traffic light' when the maximum number of people in a space is exceeded. Building operators can also use available intelligence such as foot traffic ‘heat maps’ to identify problem areas that tend to become congested and place hand sanitiser stations at heavily frequented hotspots. At the same time, the option to perform remote maintenance on these systems limits the exposure of technicians in the field during the pandemic. Again, the underlying camera hardware and software already exist. Cameras will be able to ‘learn’ future functionality to curb the spread of the coronavirus Looking ahead, cameras with video analytic and neural network-based analytic capabilities will be able to ‘learn’ future functionality to curb the spread of the coronavirus. For instance, cameras could monitor distances between individuals and trigger voice announcements when social distancing guidelines are violated. Facial recognition software can be trained to monitor personal protective equipment (PPE) compliance and sound alerts for persons entering buildings without masks. The technical requirements are already in place. The task at hand is to deliver these new functionalities to cameras at scale, which is where open camera platforms hold the key. Why open camera operating systems? When it comes to innovating future camera applications that extend beyond security, no hardware manufacturer should go at it alone. Instead, an open platform approach provides the environment for third-party developers to innovate and market new functions. In essence, an open platform principle allows customers and users to change the behavior of devices by adding software afterwards. This software can either be found in an app store or can be self-developed. For a precedent, we can look at the mobile phone industry. This is where software ecosystems like Android and Apple’s iOS have become the norm. They have also become major marketplaces, with the Apple App Store generating $519 billion in billings on 2019, as users use their phones for far more than just making phone calls. In the same way, intelligent cameras will be used far beyond classic video applications in the future. To get there, adopting an open platform principle is essential for a genuine transformation on an industry level. But establishing an open platform principle in the fragmented video security industry demands a cooperative approach. In 2018 Bosch started a fully owned start-up company, Security & Safety Things, and became one of five founding members of OSSA (Open Security & Safety Alliance). With more than 40 members, the Alliance has collectively created the first Technology Stack for “open” video security devices. This includes the OSSA Application Interface Specification and Compliant Device Definition Specification. An open camera platform for innovating future functionality  Based on OSSA’s common APIs, collective approach on data security and core system requirements for video security cameras, the first camera manufacturers were able to build video security cameras that adopt an open platform principle. Further fueling innovation, OSSA focused on driving the creation of one centralised marketplace to unite demand and supply in the market. Camera devices that are built in accordance with OSSA’s Technology Stack, so-called “Driven by OSSA” devices, can benefit from this marketplace which consists of three pillars: a development environment, an application store, and a device management portal. Security & Safety Things has advanced OSSA’s open camera platform concept, built this marketplace for the security and safety industry and has developed the open OS that powers the first “Driven by OSSA” devices. Making it quick and simple to customise security solutions by installing and executing multiple apps This year, Bosch, as one of the first camera manufacturers, introduces the new INTEOX generation of open platform cameras. To innovate a future beyond security functionality, INTEOX combines built-in Intelligent Video Analytics from Bosch, an open Operating System (OS), and the ability to securely add software apps as needed. Thanks to the fully open principle, system integrators are free to add apps available in the application store, making it quick and simple to customise security solutions by installing and executing multiple apps on the INTEOX platform. In turn, app developers can now focus on leveraging the intelligence and valuable data collected by analytics-equipped cameras for their own software developments to introduce new exciting possibilities of applying cameras. These possibilities are needed as smart buildings and IoT-connected technology platforms continue to evolve. And they will provide new answers to dealing with COVID-19. The aforementioned detection of face masks and PPE via facial detection algorithms is just one of manifold scenarios in which new apps could provide valuable functionality. Contact tracing is another field where a combination of access control and video analytics with rich metadata can make all the difference. Overall, open camera platforms open a future where new, complex functionality that can save lives, ensure business continuity and open new business opportunities will arrive via something as simple as a software update. And this is just the beginning.

Bosch introduces Access Management System 3.0 that integrates with other security solutions
Bosch introduces Access Management System 3.0 that integrates with other security solutions

Today’s market wants access control systems that are always available, scalable, and integrated with other security solutions like video and intrusion systems to ensure the highest security and safety levels. At the same time, these systems must be easy to configure and use. With the introduction of the Access Management System 3.0, Bosch meets all of these requirements. Always available for security Access Management System 3.0 is designed to be available at all times. Its resilient design includes a Master Access Controller (MAC) as an additional layer of defence between the server and the access controllers. If the server fails, the MAC takes over, ensuring continuous communication across controllers while sharing necessary information from the card readers. In addition, access control functionalities that involve multiple access readers, such as anti-passback and guard tour can continue to perform. The anti-passback functionality is an important feature to ensure a high level of security. It prevents a cardholder from passing a card to another person enabling an unauthorised entry. Guard tour is a safety functionality offered to security guards, which uses access readers as checkpoints along a defined route at specified times. Threat level management The different threat levels can make all doors open, or all doors blocked, or a mix of open and blocked Any deviation of sequence or timing causes an alarm in the Access Management System. Immediate notifications to colleagues or first responders increase the safety of security guards. In the rare event that both the Access Management System 3.0 server and the MAC fail, cardholders can still enter and leave areas with their badges because the database is stored directly on the Access Management Controllers (AMCs). Thanks to this offline capability, it is possible to save millions of events even during downtimes, ensuring the continuous availability of the system. Access Management System 3.0 offers up to 15 configurable threat levels such as lockdown, controlled lockdown, or evacuation, which means safety measures can be initiated quickly in critical situations such as fire or security breach. The threat level state is activated by one of three triggers: operator workstation, external contact such as an emergency button, or specially configured “emergency” cards that are presented to a reader. The different threat levels can make all doors open, or all doors blocked, or a mix of open and blocked. Scalable and future-proof Users can start small and add extra capacity whenever necessary. The Access Management System 3.0 software can be expanded up to 10,000 doors and 200,000 cardholders. The software is offered in three pre-configured software bundles from medium to large organisations: Lite (max. 144 doors), Plus (max. 512 doors), and Professional (max. 10,000 doors). All bundles support up to 200,000 cardholders. No hardware needs replacing when expanding; users only require software upgrades and possibly additional controllers, readers, and cards. So, increasing the system is also cost-efficient. Customers who work with the software solution Access Professional Edition (APE) from Bosch can migrate to the Access Management System 3.0 by using the new importer/exporter tool. Together with regular updates to data security enhancements, these features make the system a future-proof investment - suitable for office and government buildings, retail environments, educational institutions, and more. Easy configuration and operation Access Management System 3.0 also has trusted digital certificates for mutual authenticationConfiguration is easy: Users can import existing floor maps into the system, and drag and drop icons on the map to represent controllers, doors, and building objects. User onboarding is straightforward. For example, enrolment and assignment of access profiles are all implemented in one dialogue manager. Operation is smooth: The graphical user interface (GUI) is simple and easy to understand. The dark colour scheme of the GUI reduces eye-strain and fatigue, so operators stay fresh and alert. Access Management System 3.0 offers protection against cybercrime and loss of personal data. The database, as well as the communication between the server and access controllers, is encrypted at all stages through the support of the secure Open Supervised Device Protocol (OSDP) v2 protocol. Access Management System 3.0 also has trusted digital certificates for mutual authentication between the server and client to prevent tampering by unauthorised clients and uses secure design principles such as “secure-by-default” and “principle of least privilege.” Integration with third-party solutions Access Management System 3.0 is ideal as a standalone solution to meet today’s access control needs. It integrates seamlessly with Bosch B Series and G Series intrusion control panels as well as with video systems such as Bosch Video Management System or third-party systems like Milestone’s XProtect for increased security and enhanced situational awareness. The integrated command and control functionality enables operators to arm and disarm intrusion panels directlyIntegration with Bosch Video Management System (version 10.1 and higher) offers manual video verification to increase the security level at doors. The operator can visually verify whether the person at the door matches the registered person in the database. If so, the operator allows the person to enter. Bosch Video Management System integration also enables searching for cardholder events and events at doors. With the searching functionality, it is possible to quickly check who has entered an area and at what time. Moreover, access commands and events can be handled in Bosch Video Management System, making the operation of the integrated system most efficient. Intrusion control panels integration B and G Series intrusion control panels integrate seamlessly into Access Management System 3.0 for efficient authorisation management and a central overview of all access and intrusion events. With central user management, operators can add, delete, and modify intrusion-related user passcodes and authorisations directly into the system, as well as organise users by groups or functionalities. The integrated command and control functionality enables operators to arm and disarm intrusion panels directly in the Access Management System 3.0 user interface as well as to see states of the areas (e.g. “armed”, “ready to arm”) and detectors (e.g. “motion detected”) on the system map. This provides operators with a central overview of all access and intrusion states, allowing them to easily and remotely handle intrusion events. Bosch Access Management System 3.0 is available for sale and makes access management simple, scalable, and always available.

Open Security and Safety Alliance announce commercial video security cameras and Application Interface Specification
Open Security and Safety Alliance announce commercial video security cameras and Application Interface Specification

The Open Security & Safety Alliance (OSSA), an industry body comprised of influencers and innovative organisations from all facets of the security, safety and building automation space, announced a series of milestones achieved in the past 20 months since the Alliance opened its doors. Significant markers include the OSSA common Technology Stack and two resulting specifications, the introduction of the first OSSA-inspired digital marketplace, and the newly unveiled “Driven by OSSA” designation for the first commercially available video security devices based on the Alliance philosophy and purpose. These accomplishments roll up into the organisation’s overall vision of ‘one global approach to fuel the creation of new value within the security and safety space.’ Consistency across video security devices The OSSA-orchestrated ecosystem is designed to enhance trust, and to enable innovation and opportunity for industry stakeholders and customers. The initiative is anchored by OSSA’s first Technology Stack, which describes the fundamental thoughts on how to create harmony across video security devices to enhance trust and enable innovation. Under the umbrella of this guiding document, and further solidifying it, the Alliance is now launching the first two in a series of technical specifications, being: OSSA Application Interface Specification This technical specification (available to OSSA members only) defines a set of four interfaces which collectively enable third-party software applications to run on video security cameras following the Technology Stack. The input stream describes the video frames and messages the applications can subscribe to. The web API describes how applications can make use of the camera’s webserver to support, configuration and data upload to the application. The system APIs provide system information regarding OS version, capabilities and information about the video security camera. This is needed to understand the features and APIs that are available on the cameras to make use of device-specific functionality. The streaming application model allows applications to interact with each other. Apps can share their results, such as events and scene descriptions, with other apps on the device or (video management) software in the network. OSSA Compliant Device Definition Specification This technical specification sets the core system requirements for video security cameras following the OSSA Technology Stack to provide a basis of trust and for app interoperability across vendors. This spec is publicly available. The First “Driven by OSSA” Commercial Cameras Camera manufacturers have started to introduce to the market, devices designed to reduce fragmentation and orchestrate harmony within an open ecosystem for the surveillance industry. The first manufacturers to launch cameras based on OSSA’s Technology Stack include Topview/Qisda, Ability/AndroVideo, Bosch (through their INTEOX camera line), VIVOTEK and Hanwha Techwin. The first commercially available products based on the specifications set forth by the Alliance, OSSA will receive a signage mark for video security cameras. Companies that use this “Driven by OSSA” signage: Are full OSSA members; have signed the OSSA by-laws guiding amongst other things minimum requirements regarding data security and privacy protection. Follow the OSSA Technology Stack for video security devices that prescribes the use of an open operating system (OS). Security & Safety Things, an OSSA member company, developed the open OS and made it available to OSSA members. Ensure seamless connectivity within one centralised digital marketplace. Offer the ability to install and execute third-party apps on their cameras. One Centralised Digital Marketplace OSSA is driving the creation of one centralised marketplace to unite demand and supply in the market. Camera devices that are built in accordance with OSSA’s Technology Stack, so-called “Driven by OSSA” devices, can benefit from this marketplace which consists of (1) a development environment (2) an application store and (3) a device management portal. System integrators, using the application store, can deploy available apps across devices, in a brand independent manner, to meet specific customer requirements. App developers will find in the development environment comprehensive tools, documentation and libraries to develop new software applications. These new apps can then be offered for sale through the application store. “This is an exciting time for security and safety professionals as the main industry players pivot together in a new direction based on digital connections afforded by the IoT,” said Johan Jubbega, President, Open Security & Safety Alliance. “In these current times of global change and uncertainty, it’s of vital importance that we persist in our quest for new market opportunities and current market efficiencies, and we’re proud to be facilitating this movement that is shaping the future of the security and safety systems environment.”