Download PDF version Contact company

Access control system specialists Nortech have recently seen Gloucestershire Care Services NHS Trust update and improved Tewkesbury Community Hospital’s car park using Nortech’s Feemaster system.

Nortech’s Feemaster range was installed by entry control system specialists ASGuk, who were appointed by Gloucestershire Care Services NHS Trust to design and install a parking control system to stop visitors misusing the site’s car park.

ASGuk was able to use their 30 years of experience to propose a time and budget-friendly solution which fitted the client’s needs now and in the future, combining both automatic barriers and parking ticket control.

ASGuk selected Nortech’s FeeMaster parking system as part of the design, which includes the FeeMaster Smart Entry Station, FeeMaster Smart Exit Station, and a number of FeeMaster Smart Consoles for inside the building. The console allows the staff to control any misuse of the car park and ensures that there are enough parking spaces for visitors and patients.Nortech's products provide an easy solution to the ongoing parking problem and offers reduced cabling

Smart parking management

Nortech’s FeeMaster smart parking management system is a flexible, simple and cost-effective way of managing car parking access and controlling validity periods using Mifare smart cards. This avoids the need for expensive cabling between components and minimises disruption. 

Chris Vokes, Technical Sales at ASGuk Security and Safety Systems commented: “We selected Nortech because its systems were the right fit for the hospital’s short and long-term needs. The products provide an easy solution to the ongoing parking problem and fitted the criteria for what the client wanted, including reduced cabling.

“We have known Nortech for many years and are very happy with how the system works, their technical support and the end result achieved for the client. We will most certainly continue to use Nortech products on future projects.”

FeeMaster-powered access control

The FeeMaster entry station is designed to be used to record the date and time that a vehicle enters a car park. Located at the entrance of the car park, it issues tickets to visitors as they arrive, with each ticket containing a barcode, serial number and the date and time.

The FeeMaster Smart exit station prevents unauthorised vehicles leaving a car park or entering restricted areas

Dispensing the ticket triggers an ‘open’ signal to the entry barrier. The ticket is then taken to the hospital’s reception desk where the date and time is used in conjunction with the FeeMaster Smart Console. 

The FeeMaster Smart exit station prevents unauthorised vehicles leaving a car park or entering restricted areas. Located at the exit of the car park or the entrance to a restricted area, it validates the Mifare smart cards and exit tokens.

The exit station is equipped with a barcode scanner to read exit tokens issued by the FeeMaster Smart console, as well as entry tickets issued at the entry station. Each ticket is valid for single use at the exit station during the validity period assigned to it. The exit station controller checks the details on the barcode ticket and sends an ‘open’ signal to the barrier. 

Efficient tariff management

The FeeMaster Smart Console is a compact and easy-to-install device that reads barcode tickets issued at the entry station, calculates the fees based on pre-programmed tariff details, and encodes reusable Mifare access control cards with validity data. If necessary, the console can print customer receipts and/or barcode exit tokens. It can also control a till drawer and send a control signal to a vehicle barrier/turnstile.

The console may also be connected to a PC so that transactions can be analysed and additional tariff management features may be used.

Nortech has supplied products and solutions to the security industry for over 25 years as an independent British company. The company uses extensive experience and expertise to create new security products to fit their clients’ needs and designs everything with the customer in mind.

Download PDF version Download PDF version

In case you missed it

Security & Safety Things becomes Azena, underscores advances in smart camera platform development
Security & Safety Things becomes Azena, underscores advances in smart camera platform development

Security & Safety Things is announcing that it has rebranded to Azena, a new brand name that underscores the company’s corporate growth and leading-edge smart camera platform and positions it for the next chapter in its ambitious plans for redefining video analytics. With a growing slate of global customer and partner collaborations and expanding geographic coverage, Azena will continue to increase the value of its platform for systems integrators and end customers. More than 100 AI-enabled video analytics apps Since its market introduction in 2018, Azena has grown to more than 120 employees spread across its headquarters in Munich, its technology Innovation Accelerator facility in Pittsburgh, and another development hub in Eindhoven, The Netherlands, all supporting the Azena open platform for smart cameras.Integrators can flexibly add or change apps on one or multiple cameras as needed for their customers The Azena platform is comprised of an open operating system for cameras and an Application Store with nearly 100 Artificial Intelligence (AI)-enabled video analytics apps. It enables smart cameras to simultaneously run multiple apps directly on the device. Integrators can flexibly add or change apps on one or multiple cameras as needed for their customers and use any of the 15 cameras from six different manufacturer partners in a variety of form factors.“Systems integrators play a crucial role in connecting the video analytic edge devices on our platform into the larger system landscape for a truly data-driven approach to security, operational intelligence and automation,” said Hartmut Schaper, chief executive officer, Azena. “Our new identity as Azena positions us for improved name recognition and market presence as we continue to add functionality and the potential for expansion into new markets for our systems integrator partners.” More than 40 use cases in 25+ verticals The Azena Application Store features apps that address more than 40 different use cases in at least 25 different vertical markets, ranging from traditional perimeter security, retail loss prevention and occupancy management to stadium security and even the unique needs of aquaculture. Some examples of use cases include: One U.S. professional hockey team, the Pittsburgh Penguins, is using the Azena platform to monitor crowding at its stadium entrances, license plate recognition for more efficient stadium parking and heat mapping for improved layouts of its fan merchandise retail outlets. An oil drilling company is deploying smart cameras running the Azena OS so operations staff can remotely monitor any pumping disruptions in the oil fields. A chemical plant is monitoring its locations for the presence of smoke to enhance  workplace safety measures Collaboration with Proseguy Systems integrator Prosegur, one of the world’s largest security companies, has announced its collaboration with Azena to use analytics on the edge as part of its Security Operations Center as a service offering. By deploying more sophisticated analytics to measure activity or automatically verify alarms, incoming alarm traffic from customer sites can be prefiltered, reducing the number of alarms needing to be handled by human operators in the SOC, enabling a more appropriate response.Integrators will find a host of other new features in the Azena platformIntegrators will find a host of other new features in the Azena platform designed to leverage device management capabilities and remote access for diagnosis and maintenance to cameras on a customer site, using Azena’s digital twin architecture. Other benefits include: Ability to run all the analytics apps from the Azena Application Store on the video stream of existing IP cameras by means of a small appliance from one of the camera manufacturer partners, bringing AI to already installed video systems Wide range of integration options to connect VMS systems, dashboard software, access systems, other apps or other cameras to support the creation of sophisticated end-to-end solutions Option for integrators to build and deploy custom solutions with apps available only to them and their customers via the Azena Application Store Ability to securely and remotely connect to a customer camera without a VPN A new integration assistant that quickly builds middleware for custom integrations between Azena components and third-party software and hardware Opportunity to negotiate directly with app developers on bulk pricing Standardised terms of use that can be adopted by all applications in the Application Store

How soon will access control cards become extinct and why?
How soon will access control cards become extinct and why?

Since the advent of the physical security industry, access control has been synonymous with physical cards, whether 125 kHz ‘prox’ cards or the newer smart card alternatives. However, other credentials have also come on the scene, including biometrics and even smart phones. Some of these choices have distinct cost and security advantages over physical cards. We asked this week’s Expert Panel Roundtable: How soon will the access control card become extinct and why? 

Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach
Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach

As the number of connected devices increases worldwide, the ways that they are being used, designed, and tested have also expanded. The rise of connected devices is demanding engineers to harness the power of the internet of things, which is expected to hit 28 billion by 2025. A comprehensive approach to device design is needed more than ever to address the challenges that this rapid growth will bring. Why engineers should be using IoT technology in product design The demand for devices designed to use the Internet of Things (IoT) technology is increasing as more industries are finding expanded ways to put them into use. Industries such as healthcare, automobiles, and agriculture are becoming more dependent on cloud capabilities and are therefore in need of new devices able to connect to it. Due to this rise in demand, an increasing amount of devices are delivering a multitude of benefits both to consumers and companies. However, this new wave of products has led to a growing list of challenges for engineers as they are forced to address IoT tech in regards to connectivity, regulations, longevity, and security. Ways to use IoT in the development process Engineers are facing these new challenges along with the normal pressure of deadlines and test considerations. By approaching all of these issues from a comprehensive point-of-view, the solutions become clearer and new device capabilities can be born. Let’s look at the challenges individually as well as possible solutions for them. Improving connectivity IoT enables data to be transferred between infrastructure, the cloud, and devices, making the process smooth  Because IoT is based around connection, it’s no surprise that the primary challenge for engineers to overcome is the improvement of connectivity between devices. IoT enables data to be transferred between infrastructure, the cloud, and devices, so making this process as smooth as possible is crucial. The main challenges involved with connectivity have to do with development and product testing while meeting industry standards and best practices. Additionally, many companies lack the necessary equipment and technology to develop new IoT devices, which makes it difficult to create scalable prototypes and test new products. Suggested solutions To address the issue of not having the expertise and necessary tools for testing, we suggest outsourcing the prototyping and evaluation process instead of attempting to tackle this in-house. By doing this, you’re able to free up resources that would otherwise be needed for expensive equipment and qualified staff. Helping comply with regulations When working with devices that are connected across the world, there is a complex web of regulations and conformance standards that can lead to challenges for engineers. The necessity of complying with these regulations while also pushing to meet deadlines can be burdensome and lead to an increase in production time and expenses. Failure to comply with global and regional laws, as well as system and carrier requirements, can lead to fines and costly setbacks. This type of failure can destroy a company’s reputation on top of causing financial losses, often leading to the loss of business. Suggested solutions By testing the IoT device design and components early, engineers can address any pre-compliance issues that may arise. During the early stages of development, we suggest using scalable and automated test systems readily available in the marketplace. Improved communication with other devices New challenges arise as new devices hit the market and existing technologies are redesigned to offer a better experience In the rapidly growing number of connected devices, new challenges will arise as new devices hit the market and existing technologies are redesigned to offer a better user experience. This rapid growth in devices will lead to congested networks leading to the necessity of devices being able to function in the midst of increased traffic and interference. Failure to do this will lead to delayed responses which could prove to be fatal. Suggested solutions The best solution for this issue is found in the evaluation process and supporting test methods that the Institute of Electrical and Electronics Engineers (IEEE) published in the American National Standard for Evaluation of Wireless Coexistence (ANSI). This process addresses the interconnectivity issues present in radio frequency environments. The outlined process involves defining the environment and evaluating the wireless performance of the equipment through thorough testing. An in-depth version can be found in its entirety online. Increasing the longevity of devices IoT devices are being used in vital industries such as healthcare and automotive so battery life and power consumption are two challenges that engineers must take seriously. A failure in this area could potentially lead to loss of life or safety concerns on the road. As new firmware and software are being designed to address these factors, engineers must be implementing them into IoT devices with the ability to be continually updated. Suggested solutions Longevity should be addressed in all aspects of the design process and tested thoroughly using a wide range of currents. By doing this, an engineer can simulate consumer applications to best predict performance. Security Security and privacy are concerns with any technology, but with the use of IoT in medical devices, it’s paramount Security has been a controversial issue for IoT since its inception. Security and privacy are concerns with any technology, but with the widespread use of IoT in medical devices, smart home appliances, and access control and surveillance, it’s paramount. For example, medical devices may store information about health parameters, medications, and prescriber information. In some cases, these devices may be controlled by an app, such as a smart pacemaker, to prevent heart arrhythmias. Naturally, a security issue in these devices could be devastating. Another example of dangerous security concern is with surveillance cameras and access control, such as for home or business security systems. These intelligent door locking systems contain locks, lock access controllers, and associated devices that communicate with each other. Suspicious activities are flagged with alerts and notifications, but if a hacker gains access, it can lead to real-world, physical danger. Security design points Here are some key points for security design: Physical security: IoT devices may be in external, isolated locations that are vulnerable to attack from not only hackers but by human contact. Embedding security protection on every IoT device is expensive, but it’s important for general security and data safety. Security of data exchange: Data protection is also important because data gets transmitted from IoT devices to the gateway, then onto the cloud. With surveillance and access control information or sensitive medical information, and encryption is vital to protecting data from a breach. Cloud storage security: Similar to data exchange, the information stored in medical devices, surveillance and access control systems, and some smart appliances with payment features, must be protected. This includes encryption and device authentication through access control, which can police what resources can be accessed and used. Update: Security vulnerabilities will always occur, so the key to addressing them is having a plan to address errors and release patches. Customers should also have options to secure devices quickly and effectively. Suggested solutions Engineers can include security and protection into IoT devices with early and perpetual testing throughout the design process. Most security breaches occur at endpoints or during updates, giving engineers a starting point for how to address them. Creating more secure devices Ensuring the security of connected devices should be of supreme importance for engineers as these devices are vulnerable to security breaches. The ultimate security of devices goes beyond the scope of engineering as the network and enterprise levels must also be secure to protect against potential threats. However, engineers play a role in this protection as well and should consider device security in the design process. Suggested solutions On a device level, engineers can help protect IoT devices from vulnerabilities by implementing early testing and continuing it throughout the design process. Most security transgressions occur at endpoints so this continual testing can, and should, create barriers to breaches. Regulations and compliance For IoT engineers, the complex web of regulations and compliance standards present new challenges Regulations and compliance surrounding data and technology are nothing new, but for IoT engineers, the complex web of regulations and compliance standards present new challenges. Engineers are already addressing obstacles in security and connectivity, all while meeting deadlines, and working around regulations adds time and expense to the process. Unfortunately, a failure to comply with global, regional, or local laws can lead to setbacks and fines. In addition to time lost in production and possible fines, the damage to a company’s reputation can lead to even more losses. Suggested solutions Compliance should be considered early and often in the design process. In the early stages of development, the IoT device or components can be tested to address and compliance issues. If possible, use a scalable and automated test system. The comprehensive solution As we stare at an uncertain future full of possibilities, it’s clear to see that new challenges will continue to be presented as technology evolves and new innovative devices are designed by engineers. By addressing these issues early and often, solutions can be implemented and problems prevented before they even have a chance to occur thanks to sound engineering and solid design.