Download PDF version Contact company

Specialist property developer and investor, Kajima Properties’ new project development at 77 Coleman Street in the City of London is a luxury multi-tenant office set over seven floors. BNP Paribas acts as the managing agent, while the redevelopment was designed by architect, Buckley Gray Yeoman.

The prominent London location is a minute’s walk from Moorgate Tube station and the Elizabeth Line. The redevelopment included installing elegant external facades as well as creating floors of new office space, and 16,000 sq. feet of retail, leisure and restaurant space.

The site offers exceptional internet reliability and speed for tenants, and is one of just 22 buildings in the UK to achieve a platinum connectivity rating by WiredScore, the Mayor of London’s digital connectivity rating scheme.

Seamless access control system

BNP Paribas and Kajima Properties wanted a seamless and highly efficient access system

BNP Paribas and Kajima Properties wanted a seamless and highly efficient access system to allow bona fide users and visitors easy access through reception and lifts to their desired location. This needed to be underpinned, but not impinged by, a robust security management system including CCTV to keep people and the building safe.

They wanted to keep any waiting time in reception to an absolute minimum to avoid crowding, including good access for disabled users, and for all entry to be touchless. Tenants and reception staff would need an efficient, secure and easy to use system for managing visitors.

While an entry phone and door automation would be required for anyone arriving out-of-hours, or at the rear of the property, such as for deliveries and trades people with equipment.

Bespoke security solutions

Finally, a key part of the brief was for any installed equipment, such as turnstiles and lifts, to be in keeping with the sophisticated, minimal look and feel of the building. The Team Antron Security project managed the design, supply and installation of the access control and security system for 77 Coleman Street and acted as the ‘go to’ contact for client, Kajima Properties and BNP Paribas.

Antron Security is a globally renowned installer of bespoke security solutions and has been providing security installations for the past 29 years. Taking care of the supply, design, installation and maintenance of security systems, Antron Security is NSI approved, meaning all staff and systems installed comply with the latest industry standards and are regularly inspected.

Integriti access and security management system

Inner Range provided the core access and security management system, Integriti, which enabled Antron Security to build the bespoke solutions needed for 77 Coleman Street in London, UK. Inner Range is a globally renowned company in the design and manufacture of intelligent security solutions since 1988.

More than 150,000 Inner Range systems have been installed in over 30 countries till date. The company’s flagship product, Integriti, offers enterprise-level intelligent security and integrated smart building controls for single sites through to global estate portfolios.

Seamless, touchless entry for tenants

Cards are presented to readers embedded in bespoke Integrated Design Limited (IDL) entry turnstiles

The building’s 2000+ regular users are issued secure proximity cards, carrying encrypted information about when and where the user is allowed to go. Cards are presented to readers embedded in bespoke Integrated Design Limited (IDL) entry turnstiles, which also allows them to be read by the KONE lift integration.

The high level lift integration with ‘destination control’ means the lift software takes into account where each of the building’s four lifts are, where the user’s ‘home floor’ is, as well as where other users are going/due to go, and instantly calculates the quickest lift for the new user.

Antron Security and IDL collaboration

The user is immediately directed to the most efficient lift via a display screen on the turnstile. If users are able to go to more than one floor, they can update their preference in the lift itself. For the turnstiles in the reception area, Antron Security and IDL worked closely with the vision set out by the architect to create a high-performing system that was in keeping with the sleek, minimalist design of the building.

A bespoke set up of slim ‘speed lane’ turnstile pedestals, together with a separate glass gate were an ideal solution for a reception area where space is limited but security provisions and good disabled access are needed. IDL’s Glassgate 200 opens away from the user, and closes behind, preventing tailgaters and all IDL items are manufactured in the United Kingdom. Readers for proximity cards and QR codes were set into the speed lanes to create a seamless flow through the reception area.

Fully integrated visitor management system

Inner Range’s Integriti also allowed Forge’s Bluepoint visitor management system to integrate with IDL’s turnstiles and the KONE lifts. For visitors to access tenanted floors within the building, the following has to take place:

  • A tenant creates the meeting via Bluepoint.
  • An email is generated and sent to the visitor’s inbox where they can create a mobile QR code pass and save it to their smart phone wallet.
  • When the visitor arrives, they scan their QR code on their smart phone at the reception desk, at which point their QR code becomes valid on the Integriti access control system.
  • The visitor is then able to enter via IDL’s speed lane turnstiles, and they are directed by the KONE lift display (which is set into the speed lane) to which lift car they need.
  • To leave, the visitor presents their QR code at the speed lane turnstile, which tells the system they’re leaving.
  • The QR codes are only valid for one entry and one exit, and only on the appointment date and at the planned appointment time. Afterwards, the QR code becomes invalid and is deleted from the system.
  • The QR code gives the visitor the ability to access everything they will need, from the entry turnstile and lift through to any locked doors en route.

The integration between Integriti and Forge’s Bluepoint visitor management system was achieved with an XML read/write interface, as well as API integration between a SQL database and a cloud-hosted VMS database based on Microsoft Azure cloud services platform.

BTP XIP intercom system

A BTP XIP intercom system was installed to allow visitors out-of-hours to contact the security team

A BTP XIP intercom system was installed to allow visitors out-of-hours to contact the security team, or for deliveries and trades people to use in order to access doors at the rear of the building.

The XIP system uses an ethernet distribution network, which means the system can be expanded easily, and it’s possible to install long-distance connections that data networks can’t reach.

Hikvision CCTV cameras installed

CCTV cameras from Hikvision’s ‘superior’ range have been installed throughout the site to create a hard-wired IP closed circuit television system. They are integrated with the Integriti access control system, which allows for intelligent ‘cause and effect’ monitoring.

System protocols automatically bring up specific camera feeds for security managers to view in response to alerts, and footage can be viewed holistically along with other information on from Integriti, such as if a door has been left open.

Intelligent access control

Inner Range’s Enterprise product, Integriti, provides seamless integration with a multitude of other smart building management systems, underpinned by robust security. This includes encrypting all communications through every device and interface, and providing intruder detection to European standard EN50131.

Integriti helps building managers create greener, more energy efficient sites by tracking how tenants use the building, and amending heating and lighting settings as a result. Integriti also provides trace reporting, that can identify a user’s movements if they have become unwell and identify who else has been near them.

System benefits for users

  • Touch-free entry to the building via the speed lanes and lifts.
  • No unnecessary stops for users and visitors on their way into the building.
  • Less crowding in the lift areas.
  • Easy to use visitor management system.
  • Robust security that doesn’t impinge on access.
  • Sleek and minimal design in keeping with the building design.

Jamie Crane, Commercial Director at Antron Security, stated “The flexibility of Inner Range’s Integriti access control system and Forge’s Bluepoint visitor management allowed us to incorporate high-level lift integration (known as ‘destination control’).

He adds, “Together, they create a future-proof solution as we can continue to meet the ever-changing requirements of the landlord and tenants via our ability to integrate with third party systems and devices such as lifts, intercoms, lighting and building management devices.

Download PDF version Download PDF version

In case you missed it

Security & Safety Things becomes Azena, underscores advances in smart camera platform development
Security & Safety Things becomes Azena, underscores advances in smart camera platform development

Security & Safety Things is announcing that it has rebranded to Azena, a new brand name that underscores the company’s corporate growth and leading-edge smart camera platform and positions it for the next chapter in its ambitious plans for redefining video analytics. With a growing slate of global customer and partner collaborations and expanding geographic coverage, Azena will continue to increase the value of its platform for systems integrators and end customers. More than 100 AI-enabled video analytics apps Since its market introduction in 2018, Azena has grown to more than 120 employees spread across its headquarters in Munich, its technology Innovation Accelerator facility in Pittsburgh, and another development hub in Eindhoven, The Netherlands, all supporting the Azena open platform for smart cameras.Integrators can flexibly add or change apps on one or multiple cameras as needed for their customers The Azena platform is comprised of an open operating system for cameras and an Application Store with nearly 100 Artificial Intelligence (AI)-enabled video analytics apps. It enables smart cameras to simultaneously run multiple apps directly on the device. Integrators can flexibly add or change apps on one or multiple cameras as needed for their customers and use any of the 15 cameras from six different manufacturer partners in a variety of form factors.“Systems integrators play a crucial role in connecting the video analytic edge devices on our platform into the larger system landscape for a truly data-driven approach to security, operational intelligence and automation,” said Hartmut Schaper, chief executive officer, Azena. “Our new identity as Azena positions us for improved name recognition and market presence as we continue to add functionality and the potential for expansion into new markets for our systems integrator partners.” More than 40 use cases in 25+ verticals The Azena Application Store features apps that address more than 40 different use cases in at least 25 different vertical markets, ranging from traditional perimeter security, retail loss prevention and occupancy management to stadium security and even the unique needs of aquaculture. Some examples of use cases include: One U.S. professional hockey team, the Pittsburgh Penguins, is using the Azena platform to monitor crowding at its stadium entrances, license plate recognition for more efficient stadium parking and heat mapping for improved layouts of its fan merchandise retail outlets. An oil drilling company is deploying smart cameras running the Azena OS so operations staff can remotely monitor any pumping disruptions in the oil fields. A chemical plant is monitoring its locations for the presence of smoke to enhance  workplace safety measures Collaboration with Prosegur Systems integrator Prosegur, one of the world’s largest security companies, has announced its collaboration with Azena to use analytics on the edge as part of its Security Operations Center as a service offering. By deploying more sophisticated analytics to measure activity or automatically verify alarms, incoming alarm traffic from customer sites can be prefiltered, reducing the number of alarms needing to be handled by human operators in the SOC, enabling a more appropriate response.Integrators will find a host of other new features in the Azena platformIntegrators will find a host of other new features in the Azena platform designed to leverage device management capabilities and remote access for diagnosis and maintenance to cameras on a customer site, using Azena’s digital twin architecture. Other benefits include: Ability to run all the analytics apps from the Azena Application Store on the video stream of existing IP cameras by means of a small appliance from one of the camera manufacturer partners, bringing AI to already installed video systems Wide range of integration options to connect VMS systems, dashboard software, access systems, other apps or other cameras to support the creation of sophisticated end-to-end solutions Option for integrators to build and deploy custom solutions with apps available only to them and their customers via the Azena Application Store Ability to securely and remotely connect to a customer camera without a VPN A new integration assistant that quickly builds middleware for custom integrations between Azena components and third-party software and hardware Opportunity to negotiate directly with app developers on bulk pricing Standardised terms of use that can be adopted by all applications in the Application Store

How soon will access control cards become extinct and why?
How soon will access control cards become extinct and why?

Since the advent of the physical security industry, access control has been synonymous with physical cards, whether 125 kHz ‘prox’ cards or the newer smart card alternatives. However, other credentials have also come on the scene, including biometrics and even smart phones. Some of these choices have distinct cost and security advantages over physical cards. We asked this week’s Expert Panel Roundtable: How soon will the access control card become extinct and why? 

Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach
Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach

As the number of connected devices increases worldwide, the ways that they are being used, designed, and tested have also expanded. The rise of connected devices is demanding engineers to harness the power of the internet of things, which is expected to hit 28 billion by 2025. A comprehensive approach to device design is needed more than ever to address the challenges that this rapid growth will bring. Why engineers should be using IoT technology in product design The demand for devices designed to use the Internet of Things (IoT) technology is increasing as more industries are finding expanded ways to put them into use. Industries such as healthcare, automobiles, and agriculture are becoming more dependent on cloud capabilities and are therefore in need of new devices able to connect to it. Due to this rise in demand, an increasing amount of devices are delivering a multitude of benefits both to consumers and companies. However, this new wave of products has led to a growing list of challenges for engineers as they are forced to address IoT tech in regards to connectivity, regulations, longevity, and security. Ways to use IoT in the development process Engineers are facing these new challenges along with the normal pressure of deadlines and test considerations. By approaching all of these issues from a comprehensive point-of-view, the solutions become clearer and new device capabilities can be born. Let’s look at the challenges individually as well as possible solutions for them. Improving connectivity IoT enables data to be transferred between infrastructure, the cloud, and devices, making the process smooth  Because IoT is based around connection, it’s no surprise that the primary challenge for engineers to overcome is the improvement of connectivity between devices. IoT enables data to be transferred between infrastructure, the cloud, and devices, so making this process as smooth as possible is crucial. The main challenges involved with connectivity have to do with development and product testing while meeting industry standards and best practices. Additionally, many companies lack the necessary equipment and technology to develop new IoT devices, which makes it difficult to create scalable prototypes and test new products. Suggested solutions To address the issue of not having the expertise and necessary tools for testing, we suggest outsourcing the prototyping and evaluation process instead of attempting to tackle this in-house. By doing this, you’re able to free up resources that would otherwise be needed for expensive equipment and qualified staff. Helping comply with regulations When working with devices that are connected across the world, there is a complex web of regulations and conformance standards that can lead to challenges for engineers. The necessity of complying with these regulations while also pushing to meet deadlines can be burdensome and lead to an increase in production time and expenses. Failure to comply with global and regional laws, as well as system and carrier requirements, can lead to fines and costly setbacks. This type of failure can destroy a company’s reputation on top of causing financial losses, often leading to the loss of business. Suggested solutions By testing the IoT device design and components early, engineers can address any pre-compliance issues that may arise. During the early stages of development, we suggest using scalable and automated test systems readily available in the marketplace. Improved communication with other devices New challenges arise as new devices hit the market and existing technologies are redesigned to offer a better experience In the rapidly growing number of connected devices, new challenges will arise as new devices hit the market and existing technologies are redesigned to offer a better user experience. This rapid growth in devices will lead to congested networks leading to the necessity of devices being able to function in the midst of increased traffic and interference. Failure to do this will lead to delayed responses which could prove to be fatal. Suggested solutions The best solution for this issue is found in the evaluation process and supporting test methods that the Institute of Electrical and Electronics Engineers (IEEE) published in the American National Standard for Evaluation of Wireless Coexistence (ANSI). This process addresses the interconnectivity issues present in radio frequency environments. The outlined process involves defining the environment and evaluating the wireless performance of the equipment through thorough testing. An in-depth version can be found in its entirety online. Increasing the longevity of devices IoT devices are being used in vital industries such as healthcare and automotive so battery life and power consumption are two challenges that engineers must take seriously. A failure in this area could potentially lead to loss of life or safety concerns on the road. As new firmware and software are being designed to address these factors, engineers must be implementing them into IoT devices with the ability to be continually updated. Suggested solutions Longevity should be addressed in all aspects of the design process and tested thoroughly using a wide range of currents. By doing this, an engineer can simulate consumer applications to best predict performance. Security Security and privacy are concerns with any technology, but with the use of IoT in medical devices, it’s paramount Security has been a controversial issue for IoT since its inception. Security and privacy are concerns with any technology, but with the widespread use of IoT in medical devices, smart home appliances, and access control and surveillance, it’s paramount. For example, medical devices may store information about health parameters, medications, and prescriber information. In some cases, these devices may be controlled by an app, such as a smart pacemaker, to prevent heart arrhythmias. Naturally, a security issue in these devices could be devastating. Another example of dangerous security concern is with surveillance cameras and access control, such as for home or business security systems. These intelligent door locking systems contain locks, lock access controllers, and associated devices that communicate with each other. Suspicious activities are flagged with alerts and notifications, but if a hacker gains access, it can lead to real-world, physical danger. Security design points Here are some key points for security design: Physical security: IoT devices may be in external, isolated locations that are vulnerable to attack from not only hackers but by human contact. Embedding security protection on every IoT device is expensive, but it’s important for general security and data safety. Security of data exchange: Data protection is also important because data gets transmitted from IoT devices to the gateway, then onto the cloud. With surveillance and access control information or sensitive medical information, and encryption is vital to protecting data from a breach. Cloud storage security: Similar to data exchange, the information stored in medical devices, surveillance and access control systems, and some smart appliances with payment features, must be protected. This includes encryption and device authentication through access control, which can police what resources can be accessed and used. Update: Security vulnerabilities will always occur, so the key to addressing them is having a plan to address errors and release patches. Customers should also have options to secure devices quickly and effectively. Suggested solutions Engineers can include security and protection into IoT devices with early and perpetual testing throughout the design process. Most security breaches occur at endpoints or during updates, giving engineers a starting point for how to address them. Creating more secure devices Ensuring the security of connected devices should be of supreme importance for engineers as these devices are vulnerable to security breaches. The ultimate security of devices goes beyond the scope of engineering as the network and enterprise levels must also be secure to protect against potential threats. However, engineers play a role in this protection as well and should consider device security in the design process. Suggested solutions On a device level, engineers can help protect IoT devices from vulnerabilities by implementing early testing and continuing it throughout the design process. Most security transgressions occur at endpoints so this continual testing can, and should, create barriers to breaches. Regulations and compliance For IoT engineers, the complex web of regulations and compliance standards present new challenges Regulations and compliance surrounding data and technology are nothing new, but for IoT engineers, the complex web of regulations and compliance standards present new challenges. Engineers are already addressing obstacles in security and connectivity, all while meeting deadlines, and working around regulations adds time and expense to the process. Unfortunately, a failure to comply with global, regional, or local laws can lead to setbacks and fines. In addition to time lost in production and possible fines, the damage to a company’s reputation can lead to even more losses. Suggested solutions Compliance should be considered early and often in the design process. In the early stages of development, the IoT device or components can be tested to address and compliance issues. If possible, use a scalable and automated test system. The comprehensive solution As we stare at an uncertain future full of possibilities, it’s clear to see that new challenges will continue to be presented as technology evolves and new innovative devices are designed by engineers. By addressing these issues early and often, solutions can be implemented and problems prevented before they even have a chance to occur thanks to sound engineering and solid design.