EUSAS and Euralarm, hosted by Airbus, recently organised their second joint conference, which was this year on the topic of aviation safety and security. It showed once again the importance of technological development for an industry endeavoured to protect lives with a particular relevance to the aeronautics and air transport sectors.

Aviation safety & security

The US Federal Aviation Administration reports yearly over 100 false fire alarms on airplanes, resulting in unplanned landings and turn-backs. The consequences for passengers, airlines’ reputations and managing flight routes make the issue of false alarms a priority for the companies providing fire detection devices for airplanes – and this is just one example of the challenges of safety and security on airplanes. Several organisations and companies gathered for two days on July 11th and 12th in Bremen, the second-largest Airbus site in Germany, where airplanes’ wings and fuselages are manufactured.

Airbus, the biggest aeronautics and space company in Europe and a worldwide leader in the sector, was the host of a series of lectures and presentations on fire detection, fire suppression, evacuation and security in the aviation sector. This event was jointly organised by the European Society for Automatic Alarm Systems (EUSAS), a group connecting academia and industry, and Euralarm, which represents the European fire safety and security industry.

Fire detection technologies

The event addressed the special challenges of fire detection and extinguishing in airplanes, airports and in the aviation industry. From the depleting extinguishing agent reserves worldwide, to the large number and sheer size of airport buildings and hangars, which require specific solutions on top of traditional fire detection technologies. Furthermore, are the financial and time constraints for compliance testing in an industry where efficiency and safety are a must.

Detection systems must provide an indication to the flight crew within one minute after the start of a fire

The criteria used for fire detection testing on airplanes are stringent. Detection systems must provide an indication to the flight crew within one minute after the start of a fire, but also be highly resistant to false-alarms. This has led the aviation industry to ask for the most advanced technologies to be used on aircrafts: such as multi-wavelength, multi-scattering angle photoelectric detection, a field at the edge of applied physics, and which was presented by Kenneth Bell, from UTC Aerospace Systems.

Green fire suppression system

Another issue for the industry is the replacement of Halon, a gas that has a high global-warming factor and attacks the ozone layer in our atmosphere. This fire suppression agent is used in cargo compartments, as well as for turbine fire due to its favourable characteristics. The production of Halon has now been discontinued and stocks of recuperated gas are rapidly declining.

While Terry Simpson and Edda Liu from UTC Aerospace Systems presented the overall current progress on the replacement of Halon for fire extinguishing and suppression, Dr. Jan Boris Philipp, from Diehl Aviation, in Germany, presented an alternative green fire suppression system manufactured by his company.

Computer-simulated airport evacuation

Many solutions presented at the conference were based on computer simulations. Real life fire extinguishing tests on airplanes are part of the certification process of new airplanes. To avoid environmental consequences, a newly developed simulation technique presented by Airbus’ Dr. Konstantin Kallergis, can now predict the fire suppressant’s behaviour inside the cargo compartment.

Project ORPHEUS allows the computer-simulated modelling of an airport’s evacuation, as well as smoke spread prediction in case of fire

Another illustration was the research project ORPHEUS, financed by the German federal government, which was presented by Dr. Lukas Arnold, from the Institute of Advanced Simulation in Jülich, near Cologne. It allows the computer-simulated modelling of an airport’s evacuation, as well as smoke spread prediction in case of fire. The evacuation test concept of an A380 aircraft was impressively shown by Wolfgang Moeller from Airbus: all 850 passengers and crew members could escape the aircraft in significantly less than 90 seconds.

Video-based detection technologies

On the topic of airports and hangars, the width and height of the buildings is generally the main problem, as was explained by Securiton’s Stefan Brügger. Automation and integration of electronic safety and security solutions presented by Maarten Wings from Bosch, while Roland Voraberger from g+m elektronik, a company in Switzerland, provided a concrete example for the connection of voice alarm systems to fire alarm systems, which is not as straightforward in airports as it would be in smaller buildings.

The challenges of fire detection in buildings with high-ceilings, which is a case for most modern terminals, or half open hangars could be overcome in the future with video-based detection technologies or thermal radiation-based fire detectors, presented respectively by Soeren Wittmann from Bosch and Dr. Simon Trippler together with Dr. Jörg Kelleter from GTE Industrieelektronik. Video is, of course, also useful when it comes to security with video analysis against intrusion in security zones being presented by Securiton’s Thomas Hermes and Michael Seidl, from the Frankfurt Airport, the busiest in Europe by cargo traffic.

Adaptive Escape Routing Systems

Finally, in a demonstration that stood-out by its focus on a non-technology related topic, Dr. Sebastian Festag, representing Germany’s electronic industry association ZVEI, explained the concept of Adaptive Escape Routing Systems and shows why human behaviour is of major significance in an optimised evacuation and guidance strategy.

The solution to fire and security challenges in aviation clearly lies in cutting edge technologies and research on fire safety and security, as well as in the standards, which sometimes lag behind the technology. Dr. André Freiling, from Airbus, a speaker at the event, noted that some standards used to testing smoke detection in aircrafts for example can date as far back as 1994.

Download PDF version Download PDF version

In case you missed it

The physical side of data protection
The physical side of data protection

The impact of the COVID-19 pandemic has accentuated our digital dependency, on a global scale. Data centres have become even more critical to modern society. The processing and storage of information underpin the economy, characterised by a consistent increase in the volume of data and applications, and reliance upon the internet and IT services. Data centres classed as CNI As such, they are now classed as Critical National Infrastructure (CNI) and sit under the protection of the National Cyber Security Centre (NCSC), and the Centre for the Protection of National Infrastructure (CPNI). As land continues to surge in value, data centre operators are often limited for choice, on where they place their sites and are increasingly forced to consider developed areas, close to other infrastructures, such as housing or industrial sites. Complex security needs One misconception when it comes to data centres is that physical security is straightforward One misconception when it comes to data centres is that physical security is straightforward. However, in practice, things are far more complex. On top of protecting the external perimeter, thought must also be given to factors, such as access control, hostile vehicle mitigation (HVM), protecting power infrastructure, as well as standby generators and localising security devices to operate independently of the main data centre. Face value How a site looks is more important than you may think. Specify security that appears too hostile risks blatantly advertising that you’re protecting a valuable target, ironically making it more interesting to opportunistic intruders. The heightened security that we recommend to clients for these types of sites, include 4 m high-security fences, coils of razor wire, CCTV, and floodlighting. When used together in an integrated approach, it’s easy to see how they make the site appear hostile against its surroundings. However, it must appear secure enough to give the client peace of mind that the site is adequately protected. Getting the balance right is crucial. So, how do you balance security, acoustics and aesthetics harmoniously? Security comes first These are essential facilities and as a result, they require appropriate security investment. Cutting corners leads to a greater long-term expense and increases the likelihood of highly disruptive attacks. Checkpoints Fortunately, guidance is available through independent accreditations and certifications, such as the Loss Prevention Certification Board’s (LPCB) LPS 1175 ratings, the PAS 68 HVM rating, CPNI approval, and the police initiative - Secured by Design (SBD). Thorough technical evaluation and quality audit These bodies employ thorough technical evaluation work and rigorous quality audit processes to ensure products deliver proven levels of protection. With untested security measures, you will not know whether a product works until an attack occurs. Specifying products accredited by established bodies removes this concern. High maintenance Simply installing security measures and hoping for the best will not guarantee 24/7 protection. Just as you would keep computer software and hardware updated, to provide the best level of protection for the data, physical security also needs to be well-maintained, in order to ensure it is providing optimum performance. Importance of testing physical security parameters Inspecting the fence line may seem obvious and straightforward, but it needs to be done regularly. From our experience, this is something that is frequently overlooked. The research we conducted revealed that 63% of companies never test their physical security. They should check the perimeter on both sides and look for any attempted breaches. Foliage, weather conditions or topography changes can also affect security integrity. Companies should also check all fixtures and fittings, looking for damage and corrosion, and clear any litter and debris away. Accessibility When considering access control, speed gates offer an excellent solution for data centres. How quickly a gate can open and close is essential, especially when access to the site is restricted. The consequences of access control equipment failing can be extremely serious, far over a minor irritation or inconvenience. Vehicle and pedestrian barriers, especially if automated, require special attention to maintain effective security and efficiency. Volume control Data centres don’t generally make the best neighbours. The noise created from their 24-hour operation can be considerable. HVAC systems, event-triggered security and fire alarms, HV substations, and vehicle traffic can quickly become unbearable for residents. Secure and soundproof perimeter As well as having excellent noise-reducing properties, timber is also a robust material for security fencing So, how do you create a secure and soundproof perimeter? Fortunately, through LPS 1175 certification and CPNI approval, it is possible to combine high-security performance and up to 28dB of noise reduction capabilities. As well as having excellent noise-reducing properties, timber is also a robust material for security fencing. Seamlessly locking thick timber boards create a flat face, making climbing difficult and the solid boards prevent lines of sight into the facility. For extra protection, steel mesh can either be added to one side of the fence or sandwiched between the timber boards, making it extremely difficult to break through. A fair façade A high-security timber fence can be both, aesthetically pleasing and disguise its security credentials. Its pleasant natural façade provides a foil to the stern steel bars and mesh, often seen with other high-security solutions. Of course, it’s still important that fencing serves its primary purposes, so make sure you refer to certifications, to establish a product’s security and acoustic performance. Better protected The value of data cannot be overstated. A breach can have severe consequences for public safety and the economy, leading to serious national security implications. Countering varied security threats Data centres are faced with an incredibly diverse range of threats, including activism, sabotage, trespass, and terrorism on a daily basis. It’s no wonder the government has taken an active role in assisting with their protection through the medium of the CPNI and NCSC. By working with government bodies such as the CPNI and certification boards like the LPCB, specifiers can access a vault of useful knowledge and advice. This will guide them to effective and quality products that are appropriate for their specific site in question, ensuring it’s kept safe and secure.

Data explosion: Futureproofing your video surveillance infrastructure
Data explosion: Futureproofing your video surveillance infrastructure

Video surveillance systems are producing more unstructured data than ever before. A dramatic decrease in camera costs in recent years has led many businesses to invest in comprehensive surveillance coverage, with more cameras generating more data. Plus, advances in technology mean that the newest (8K) cameras are generating approximately 800% more data than their predecessors (standard definition). Traditional entry-level solutions like network video recorders (NVRs) simply aren’t built to handle massive amounts of data in an efficient, resilient and cost-effective manner. This has left many security pioneers grappling with a data storage conundrum. Should they continue adding more NVR boxes? Or is there another, better, route? Retaining video data In short, yes. To future proof their video surveillance infrastructure, an increasing number of businesses are adopting an end-to-end surveillance architecture with well-integrated, purpose-built platforms for handling video data through its lifecycle. This presents significant advantages in terms of security, compliance and scalability, as well as unlocking new possibilities for data enrichment. All of this with a lower total cost of ownership than traditional solutions. Security teams would typically delete recorded surveillance footage after a few days or weeks Previously, security teams would typically delete recorded surveillance footage after a few days or weeks. However, thanks to increasingly stringent legal and compliance demands, many are now required to retain video data for months or even years. There’s no doubt that this can potentially benefit investigations and increase prosecutions, but it also puts significant pressure on businesses’ storage infrastructure. Data lifecycle management This necessitates a more intelligent approach to data lifecycle management. Rather than simply storing video data in a single location until it’s wiped, an end-to-end video surveillance solution can intelligently migrate data to different storage platforms and media as it ages. So, how does this work? Video is recorded and analysed on a combination of NVR, hyperconverged infrastructure (HCI) and application servers. Then, it’s moved to resilient file storage for a pre-determined period, where it can be immediately retrieved and accessed for review. Finally, based on policies set by heads of security, data is moved from file storage to highly secure, low-cost archive storage such as an object, tape or cloud. Data is moved from file storage to highly secure, low-cost archive storage Long-term storage This process is known as tiering. It allows businesses to use reliable, inexpensive long-term storage for most of their data, whilst still enabling security pioneers to retrieve video data when the need arises, such as during a compliance audit, or to review footage following a security breach. In a nutshell, it offers them the best of both worlds. Scaling your video surveillance infrastructure can be a headache. Businesses that rely on NVRs – even high-end units with 64 or even 96 hard drives – are finding themselves running out of capacity increasingly quickly. In order to scale, security pioneers then have to procure new boxes. With NVRs, this inevitably involves a degree of guesswork. Should they go for the largest possible option, and risk over provisioning? Or perhaps a smaller option, and risk running out of capacity again? Common management console Security pioneers can easily add or remove storage capacity or compute resources – separately or together As businesses add new cameras or replace existing ones, many end up with inadequate surveillance infrastructure made up of multiple NVR boxes along with several application servers for running other surveillance functions such as access control, security photo databases, analytics, etc. This patchwork approach leaves security pioneers scrambling for capacity, maintaining various hardware footprints, repeating updates and checks across multiple systems, and taking up valuable time that could be better spent elsewhere. By contrast, flexible HCI surveillance platforms aggregate the storage and ecosystem applications to run on the same infrastructure and combine viewing under a common management console, avoiding ‘swivel chair’ management workflows. Plus, they offer seamless scalability. Security pioneers can easily add or remove storage capacity or compute resources – separately or together. Data storage solutions Over time, this ensures a lower total cost of ownership. First and foremost, it removes the risk of over provisioning and helps to control hardware sprawl. This in turn leads to hardware maintenance savings and lower power use. Many security pioneers are now looking beyond simple data storage solutions for their video surveillance footage. Meta tags can provide context around data, making it easier to find and access when needed Instead, they’re asking themselves how analysing this data can enable their teams to work faster, more efficiently and productively. Implementing an end-to-end video surveillance architecture enables users to take advantage of AI and machine learning applications which can tag and enrich video surveillance data. These have several key benefits. Firstly, meta tags can provide context around data, making it easier to find and access when needed. Object storage platform For instance, if security teams are notified of a suspicious red truck, they can quickly find data with this tag, rather than manually searching through hours of data, which can feel like looking for a needle in a haystack. Plus, meta tags can be used to mark data for future analysis. This means that as algorithms are run over time, policies can be set to automatically store data in the right location. For example, if a video is determined to contain cars driving in and out of your premises, it would be moved to long-term archiving such as an object storage platform for compliance purposes. If, on the other hand, it contained 24 hours of an empty parking lot, it could be wiped. These same meta tags may be used to eventually expire the compliance data in the archive after it is no longer needed based on policy. Video surveillance architecture Continuing to rely on traditional systems like NVRs will fast become unsustainable for businesses Even if your organisation isn’t using machine learning or artificial intelligence-powered applications to enhance your data today, it probably will be one, three, or even five years down the line. Implementing a flexible end-to-end video surveillance solution prepares you for this possibility. With new advances in technology, the quantity of data captured by video surveillance systems will continue rising throughout the coming decade. As such, continuing to rely on traditional systems like NVRs will fast become unsustainable for businesses. Looking forward, when moving to an end-to-end video surveillance architecture, security pioneers should make sure to evaluate options from different vendors. For true futureproofing, it’s a good idea to opt for a flexible, modular solution, which allow different elements to be upgraded to more advanced technologies when they become available.

How can the security industry provide affordable and cost-effective solutions?
How can the security industry provide affordable and cost-effective solutions?

Cost is a reality to be managed. No matter how powerful or desirable a technology may be to a customer, the sale often comes down to the basic question: Can I afford it? And affordability extends not just to the purchase price, but to the cost of technology over its lifespan. In addition to advances in technology capabilities, the security industry has also achieved inroads to make its offerings more worth the cost. We asked this week’s Expert Panel Roundtable: What is the physical security industry doing to make more affordable and cost-effective technology solutions for end users?