The DOS has different tests and standards for barriers to withstand impact from different vehicles, ranging from cars to heavy-haul trucks
Barriers certified by the US Department of State can be trusted to withstand specified weights and speeds

This time of year, in the early spring, there pops up a plethora of trade shows in which security vendors can present their newest marvels to potential customers. Not to be outdone are the barriers manufacturers. Their products will range from a large metal planter to be placed in an area where no traffic is allowed to movable barriers which lower to let a car drive over and re-raise to protect the property. Some are so sophisticated that they can stop a 30-ton truck driven by terrorists at 50 mph.

Vehicle barrier testing by U.S. Department of State

But how do you know those 65,000 pounds and 50 mph figures are not just marketing numbers? If you are planning to implement such protection, you need to know exactly what weight and speed your new system will meet. And, as you go up and down the trade show aisles, you will see many different claims.

That's why you want the figures to be certified and the leading institution doing such work is the U.S Department of State. In order to be certified by the DOS, vehicle barriers must be tested by an independent crash test facility. Certification is based on speed and penetration ratings. Originally, “K” indicated vehicle speed during the crash test; and “L” indicated the maximum allowed penetration of the barrier by the vehicle. 

For test purposes, K12 denoted a speed of up to 50 mph and L3 (the highest penetration rating) denoted a penetration of three feet or less. Other ratings included: K8 = 40 mph; K4 = 30 mph; L2 = 3 ft. to 20 ft.; and L1 = 20 ft. to 50 ft. Thus, penetration levels were set at 3 feet (1 m), 20 feet (6 m) and 50 feet (15 m), measured from the point of attack to the final resting place. In 2005, a revision (rev A) issued an update, eliminating all penetration levels except the 3 feet (1 m) standard. 

Importantly, it was also recognised that different types of vehicles use different platforms, which would affect results. So, a new test standard required the use of cars, pick-ups, medium sized trucks and trucks that haul heavy goods. They are referred to as the ASTM standards.

Use these ASTM Standards for impact condition designations

Four types of vehicles are defined:

1. Small Passenger Car:  The car must have been manufactured in the last 10 years and weigh 2430 +/- 50 pounds (1100 +/- 22 kg).

2. Pickup Truck:  The truck must be a ¾-ton model, manufactured within the last 10 years and weigh 5070 +/- 100 pounds (2300 +/-46 kg).

3. Medium Duty Truck:  This vehicle must have a diesel engine with a vehicle mass of 15,000 +/- 300 pounds (6800 +/- 136 kg).

4. Heavy Goods Vehicle:  This must be a tandem axle dump truck or tandem axle with drop axle truck, tested at 65,000 +/- 1300 pounds (29,500 +/- 590 kg).

Most importantly, the new designations actually made some sense in that a car designation starts with a “C”, the pick-up is designated as a “P”, the medium duty truck gets an “M” and the heavy goods vehicle is labelled an “H”. The number following the letter is the speed, measured in mph. Thus, a “40” means the vehicle was tested at 38.0 to 46.9 mph. An H30 designation thus defines a heavy goods vehicle travelling at approximately 30 mph.

Any claims made by barricade manufacturers should be backed up by independent crash tests and certifications
The BSI has their own vehicle barricade testing standard, which specifically addresses European cars which have heavier frameworks and lower centres of gravity

As a result, it is quite easy to determine the condition designation:

  • Car: C40, C50 and C60
  • Pick-up: P40, P50 and P60
  • Medium duty truck: M30, M40 and M50
  • Heavy goods: H30, H40 and H50

What is the difference?

It’s easiest to show the difference in designations with an example. For instance, the Delta DSC501 is presently DOS-rated as a K54-certified barrier. That means it has been tested to stop a 65,000-pound truck traveling at 50 mph dead in its tracks. That also means it took on 5.4 million foot-pounds. Under the ASTM system, the DSC501 would be designated as an H50.  

The British Standard Vs. US-based DOS for vehicle barricades

The BSI (British Standards Institute) PAS 68 2007 was the first standard published for vehicle barricade testing in the United Kingdom. PAS 68: 2007 rates products by measuring the velocity and weight of the vehicle against the level of penetration of both the vehicle and any of its load past the vehicle control device. The maximum level of testing would see a 7.5 tonne (15,000 lb) vehicle travelling at 80 kph (50mph) with zero penetration.

This test differs from the U.S.-based DOS and ASTM tests by specifying a wider range of attack vehicles. Most significantly, though, it specifies European cars and trucks. European trucks have much heavier frame works and lower centres of gravity, which can significantly affect the test outcome. Marginal barricade designs that have passed U.S. tests have failed PAS 68 2007. Nonetheless, the K12 vehicle mass and speeds are very similar to the DOS and ASTM tests. The post crash measurements of penetration and general test result evaluations are also much the same.

Just remember, as you are going up and down the trade show aisles seeing the various claims, it behoves you and the people you intend to protect how and where they got those numbers. Listen for two very important terms - "independent crash test" and "certified."

To learn more about certification standards, attendees at the ISC West Exposition in Las Vegas, April 6-8, should stop by the Delta Scientific booth, #21134.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

Author profile

Greg Hamm Vice President, Sales and Marketing, Delta Scientific Corporation

As Vice President of Sales and Market for Delta Scientific, Greg Hamm plays a major role in the company's sales, project management, application engineering and corporate strategic planning. Under Hamm's leadership, Delta Scientific is delivering record numbers of vehicle access systems to customers around the globe.

In case you missed it

Which technologies will disrupt the security industry in the second half of 2020?
Which technologies will disrupt the security industry in the second half of 2020?

The first half of 2020 has been full of surprises, to say the least, and many of them directly impacted the physical security market. The COVID-19 pandemic created endless new challenges, and the physical security market has done our part to meet those challenges by adapting technology solutions such as thermal cameras and access control systems. In the second half of 2020, we can all hope for a return to normalcy, even if it is a “new normal.” In any case, technology will continue to play a big role. We asked this week’s Expert Panel Roundtable: Which technologies have the greatest potential to disrupt the security industry in the second half of 2020?

What do you need to know about thermal imaging cameras?
What do you need to know about thermal imaging cameras?

As businesses, schools, hospitals and sporting venues look to safely reopen in a COVID-19 world, thermal imaging systems will play a critical role in helping to detect and distinguish skin temperature variations in people. Thermal surveillance, a mainstay of traditional physical security and outdoor perimeter detection, is now being deployed to quickly scan employees, contractors and visitors as part of a first line of defense to detect COVID-19 symptoms. In the coming weeks and months, the security industry will look to implement thermal camera solutions for customers, yet many questions remain as to the differences between different system types and how to properly install thermal imaging cameras. In this Q&A, Jason Ouellette, Head of Technology Business Development for Johnson Controls, answers several of these questions. Q: What are some of the different thermal imaging solutions available in the market to detect an elevated temperature in a person? For the general market, there are three types of these thermographic screenings. There is the handheld device, which is typically lower cost, very portable, and very easy to use. Typically, this is a point and shoot type of device, but it requires you to be three feet or less from the person that you're screening, which, in today's world, means the user needs to wear protective personal equipment. For the general market, there are three types of these thermographic screenings The second type of solution would best be described as a thermal camera and kiosk. The advantage of this system over a handheld device is this can be self-service. An individual would go up to and engage with the kiosk on their own. But many of these kiosk type solutions have some integration capability, so they can provide some type of output, for either turnstiles, or physical access control, but not video management systems (VMS). Some of the downside of this type of system is that it’s less accurate than a thermographic solution because it does not have a blackbody temperature calibration device and the readings are influenced by the surrounding ambient temperature, called thermal drift. So instead of being able to achieve a ±0.3ºC accuracy rating, this system probably provides closer to ±0.5ºC at best. Some of these devices may be classed as a clinical thermometer with a higher degree of one time accuracy, but do not offer the speed and endurance of the thermographic solution for adjunctive use. And then there are thermal imaging camera systems with a blackbody temperature calibration device. These types of systems include a dual sensor camera, that has a visual sensor and a thermal sensor built right into the camera, along with a separate blackbody device. This provides the highest degree of ongoing accuracy, because of the blackbody and its ability to provide continuous calibration. These systems can provide much more flexibility and can offer integrations with multiple VMS platforms and access control devices. Q: When installing a thermal imaging camera system what is the most important element to consider? Camera placement is critical to ensure the system works as expected, however the placement of the blackbody device which verifies the correct calibration is in place is equally as important. If the customer wants to follow FDA medical device recommendations for camera placement, both the height of the camera and the blackbody as well as the distance between these devices should comply with the product installation instructions. This takes into account the device focal range and calibration parameters in addressing the distance from the person undergoing the scan. Also, integrators should minimise camera detection angles to ensure optimal accuracy and install cameras parallel with the face as much as possible, and again in compliance with installation instructions. Integrators should minimise camera detection angles to ensure optimal accuracy The blackbody should be placed outside of the area where people could block the device and located more towards the edges of the field-of-view of the camera. You need to keep in mind the minimum resolution for effective thermographic readings which is 320 by 240 pixels as defined by the standards. To achieve this, you would need to follow medical electrical equipment performance standards driven by IEC 80601-2-59:2017 for human temperature scanning and FDA guidelines. Within that measurement, the face needs to fill 240 x 180 pixels of the thermal sensor resolution, which is close to or just over 50 percent of the sensor’s viewing area typically, meaning a single person scanned at a time in compliance with the standards for accuracy.  Along with height and distance placement considerations, the actual placement in terms of the location of the system is key. For example, an expansive glass entryway may impact accuracy due to sunlight exposure. Installations should be focused on ensuring that they are away from airflow, heating and cooling sources, located approximately 16 feet from entry ways and in as consistent of an ambient temperature as possible between 50°F and 95°F. Q: Once a thermal imaging camera system is installed, how do you monitor the device? There are several choices for system monitoring, depending on whether the solution is used as standalone or integrated with other technologies, such as intrusion detection, access control or video systems. For standalone systems, the ability to receive system alerts is typically configured through the camera’s webpage interface, and the cameras include abilities such as the live web page, LED display for alerting, audio alerts and physical relay outputs. When done right, these features will all follow cybersecurity best practices which is important for any network solution today, including changing default passwords and establishing authentication methods. The ability to receive system alerts is typically configured through the camera’s webpage interface These types of thermal cameras can also integrate with turnstile systems, VMS platforms and access control systems. This is typically done through the integration of a relay output, activated by a triggered temperature anomaly event on a thermal imaging camera which can then be used for activities such as locking a turnstile, or through access control and video systems to send an email or provide an automated contagion report for contact tracing. These capabilities and integrations extend the monitoring capability above that of the standalone solution. The camera can be configured to monitor a specific range of low and high alerts. Users can determine the actions that should be taken when that alert exceeds the preset low or high threshold. These actions include things like a bright and easy-to-see LED can provide visual notification through pulsing and flashing lights as an example. Q: What about system maintenance? Does a thermal imaging camera require regular service in order to operate accurately? First it’s important to make sure the system is calibrated. This can be done after the unit stabilises for at least 30 minutes to establish the initial reference temperature source known as the blackbody. Calibrations conducted before this warm up and stability time period can throw off accuracy. Also, as part of your system maintenance schedule you will want to perform a calibration check of the blackbody device every 12 months, along with following recommendations of the FDA and IEC. If you install the solution and don’t perform maintenance and the blackbody calibration certificate expires, over time there’s a risk that the device will experience drift and a less accurate reading will result. There’s a risk that the device will experience drift and a less accurate reading will result Q: What final pieces of advice do you have for either an integrator who plans to install a thermal imaging camera system or an end user who plans to invest in this solution? Before you buy a thermal imaging camera check to see if the manufacturer ships the camera with a calibration certificate. Also, become familiar with FDA’s guidance released in April 2020, Enforcement Policy for Telethermographic Systems During the Coronavirus Disease 2019 (COVID-19) Public Health Emergency. This document places thermal/fever products for adjunctive use under the category of a Class I medical devices and subject to its regulatory control. Driven by these regulations and categorisation, users need to understand specifically what is required to meet the required level of accuracy for successful detection. While thermal imaging camera systems are more complex than traditional surveillance cameras, they can prove to be a valuable resource when set up, configured and maintained properly.

Recognising the importance of security officers to promote safety
Recognising the importance of security officers to promote safety

The general public doesn’t give much thought to the important role of security officers in creating and promoting safer environments. The low-profile work of security officers is vital to protecting people, places and property. During the pandemic, newer aspects to that role have emerged. Security personnel have been called on to perform diverse tasks such as managing queues at the supermarket, safeguarding testing centres and hospitals, ensuring food deliveries, and supporting police patrols. The British Security Industry Association (BSIA) and two other organisations in the United Kingdom are joining forces to raise awareness of the work of security officers and to recognise the vital importance of the duties they perform. BSIA, a trade association, includes members who are responsible for 70% of privately provided UK security products and services, including security guarding, consultancy services, and distribution and installation of electronic and physical security equipment. BSIA, the Security Institute and the Security Commonwealth Joining BSIA in the awareness campaign are the Security Institute, a professional security membership body; and the Security Commonwealth, which is comprised of 40 organisations from across the security landscape with common objectives to build professionalism, raise standards and share best practices. “The recognition of security officers as key workers is the start of a re-appraisal of what service they provide to the community in keeping the public safe and secure,” says Mike Reddington, BSIA Chief Executive. “As we exit lockdown and have to navigate public spaces again, [security officers] will have a crucial role in supporting public confidence. We are working closely with the Police and all other public bodies to find the best way to achieve this.” Security officers acknowledged as key workers The campaign will showcase security professionals as a respected, valued, professional service provider and a key worker that is acknowledged and embedded in daily lives. The British Security Industry Association (BSIA) and two other organisations in the United Kingdom are joining forces to raise awareness of the work of security officers “Great effort has been invested in the professional standards and capabilities of frontline [security] officers, and they have proven their worth during the coronavirus crisis in the UK,” says Rick Mounfield, Chief Executive, the Security Institute. “They, along with the wider security sector, deserve to be recognized, respected and appreciated for the safety and security they provide across the United Kingdom.” “[We are working to] build professionalism, raise standards and share best practices, and I hope this campaign can make more people recognise the changes we have all made and continue to make,” says Guy Matthias, Chairman of the Security Commonwealth (SyCom). The industry will be reaching out to companies, professionals, and organisations in the sector to participate in the campaign. The hope is that, over the coming weeks as lockdown is eased, the industry can play its part to ensure that the country emerges with confidence to start to recover and build for the future. Private security more important than ever The campaign will showcase security professionals as a respected, valued, professional service provider Across the pond in the United States, law enforcement professionals are facing a crisis of confidence during a time of civil unrest as protestors call to “defund the police” and to otherwise undermine and/or recast law enforcement’s role in preserving the peace and ensuring public safety. If an upshot is that public policing is starved of resources, the role of private security to supplement their mission is likely to increase. In short, the role of private security is more important than ever on both sides of the Atlantic. Public recognition of that role is welcome, obviously. In any case, the importance of their role protecting people, places and property has never been greater.