Everybody has been hooked on the discussions about Analogue HD or IP systems, but shouldn’t we really be thinking about WiFi and 5G connectivity, removing the need for expensive cabling? Are wireless networks secure enough? What is the potential range? Even the basic question about whether or not the network is capable of transferring the huge (and growing) amount of data required for High Res Video, which will soon be quadrupled with the advent of 4K and higher resolutions.

The future of video surveillance monitors

We have seen a massive uptake in 4K monitors in the security industry. While they have been relatively common in the consumer market, they are only now beginning to really take off in the CCTV market, and the advances in Analogue HD and IP technology mean that 4K is no longer the limited application technology it was just a few years ago.

Relatively easy and inexpensive access to huge amounts of storage space, either on physical storage servers or in the cloud, both of which have their own positives and negatives, have really helped with the adoption of 4K. Having said that the consensus seems to be, at least where displays are concerned, there is very little need for any higher resolution. So, where next for monitors in CCTV?

8K monitors are present, but are currently prohibitively expensive, and content is in short supply (although the Japanese want to broadcast the Tokyo Olympics in 8K in 2020). Do we really need 8K and higher displays in the security industry? In my own opinion, not for anything smaller than 100-150+ inches, as the pictures displayed on a 4K resolution monitor are photo realistic without pixilation on anything I’ve seen in that range of sizes.

The consensus seems to be, at least where
displays are concerned, there is very little
need for any higher resolution

Yes, users many want ultra-high resolution video recording in order to capture every minute detail, but I feel there is absolutely no practical application for anything more than 4K displays below around 120”, just as I feel there is no practical application for 4K resolution below 24”. The higher resolution camera images can be zoomed in and viewed perfectly well on FHD and 4K monitors. That means there has to be development in other areas.

Developments in WiFi and 5G

What we have started to see entering the market are Analogue HD and IP RJ45 native input monitors. Whilst you would be forgiven for thinking they are very similar, there are in fact some huge differences. The IP monitors are essentially like All-In-One Android based computers, capable of running various versions of popular VMS software and some with the option to save to onboard memory or external drives and memory cards. These are becoming very popular with new smaller (8-16 camera) IP installs as they basically remove the need for an NVR or dedicated storage server.

Developments in the area of WiFi and 5G connectivity are showing great promise of being capable of transferring the amount of data generated meaning the next step in this market would maybe be to incorporate wireless connectivity in the IP monitor and camera setup. This brings its own issues with data security and network reliability, but for small retail or commercial systems where the data isn’t sensitive it represents a very viable option, doing away with both expensive installation of cabling and the need for an NVR.

Larger systems would in all likelihood be unable to cope with the sheer amount of data required to be transmitted over the network, and the limited range of current wireless technologies would be incompatible with the scale of such installs, so hard wiring will still be the best option for these for the foreseeable future.

VR on the other hand is fully immersive, and for playback or monitoring of camera feeds would provide a great solution
There will be a decline in the physical display market as more development goes into Augmented and Virtual Reality

Analogue HD options

Analogue HD options have come a long way in a quite short time, with the latest developments able to support over 4MP (2K resolution), and 4K almost here. This has meant that for older legacy installations the systems can be upgraded with newer AHD/TVI/CVI cameras and monitors while using existing cabling. The main benefit of the monitors with native AHD/TVI/CVI loopthrough connections is their ability to work as a spot monitor a long distance from the DVR/NVR. While co-axial systems seem to be gradually reducing in number there will still be older systems in place that want to take advantage of the benefits of co-axial technology, including network security and transmission range. Analogue technologies will eventually become obsolete, but there is still much to recommend them for the next few years.

Analogue technologies will eventually
become obsolete, but there is still much
to recommend them for the next few years

Another more niche development is the D2IP monitor, which instead of having IP input has HDMI input and IP output, sending all activity on the screen to the NVR. This is mainly a defence against corporate espionage, fraud and other sensitive actions. While this has limited application those who do need it find it a very useful technology, but it’s very unlikely to become mainstream in the near future.

Augmented Reality and Virtual Reality

Does the monitor industry as a whole have a future? In the longer term (decades rather than years) there will definitely be a decline in the physical display market as more and more development goes into AR (Augmented Reality or Mixed Reality depending on who’s definition you want to take) and VR (Virtual Reality).

Currently AR is limited to devices such as smartphones (think Pokémon Go) and eyewear, such as the ill-fated Google Glass, but in the future, I think we’ll all have optical implants (who doesn’t want to be The Terminator or RoboCop?), allowing us to see whatever we decide we want to as an overlay on the world around us, like a high-tech HUD (Heads Up Display). VR on the other hand is fully immersive, and for playback or monitoring of camera feeds would provide a great solution, but lacks the ability to be truly useful in the outside world the way that AR could be.

Something not directly related to the monitor industry, but which has a huge effect on the entire security industry is also the one thing I feel a lot of us have been oblivious to is the introduction of quantum computers, which we really need to get our heads around in the medium to long term. Most current encryption technology will be rendered useless overnight when quantum computers become more widespread.

So, where does that leave us? Who will be the most vulnerable? What can we do now to mitigate the potential upheaval? All I can say for sure is that smarter people than me need to be working on that, alongside the development of the quantum computer itself.

Newer methods of encryption are going to be needed to deal with the massive jump in processing power that comes with quantum. I’m not saying it will happen this year, but it is definitely on the way and something to be planned for.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

In case you missed it

What are the physical security challenges of smart cities?
What are the physical security challenges of smart cities?

The emergence of smart cities provides real-world evidence of the vast capabilities of the Internet of Things (IoT). Urban areas today can deploy a variety of IoT sensors to collect data that is then analysed to provide insights to drive better decision-making and ultimately to make modern cities more livable. Safety and security are an important aspect of smart cities, and the capabilities that drive smarter cities also enable technologies that make them safer. We asked this week’s Expert Panel Roundtable: what are the physical security challenges of smart cities?

Access control systems: Ethernet vs proprietary bus network cabling
Access control systems: Ethernet vs proprietary bus network cabling

When designing a security system for a site, the question of how it should be interconnected is often one of the first you need to answer. Should you choose a system that has its own proprietary bus network, which might require twisted pair cabling, or perhaps one based on an ethernet backbone? Both types of network have their advantages and disadvantages as discussed below. Ethernet connectivity Some security systems are based on a number of modules, and each module is connected to its own ethernet connection. One big advantage of a system like this is that, in many cases, it can be much more convenient, allowing the installer to utilise existing network cabling and other infrastructure, rather than needing to install new cabling. On the other hand, if a security system relies entirely on networking infrastructure controlled by others, typically the IT department, then the stability and reliability of the security system is dependent on that network being available when your system needs it. The stability and reliability of the security system is dependent on that network being available Another potential disadvantage is that certain areas of the premises may not be equipped with a nearby network outlet, and if the network in question is not managed by you, it might be necessary to request the IT department add an outlet for you to use. Proprietary bus connectivity A system with its own proprietary bus network can also have advantages. Perhaps the first and most important difference is that, because the network cabling is installed specifically for the security system, the designer has the luxury of being able to decide exactly where the wiring should be placed and terminated. Another advantage is that the cabling would only be used by the security system, so the installation company can be sure the network will always be available, and there would be very little chance part of it could be accidentally unplugged. Another potential advantage is that some systems are able to run bus cabling of distances well over 1,000 metres, whereas individual ethernet connections are typically limited to 100 metres or less. Another consideration, which applies particularly to intruder and holdup alarm systems, is that communications between elements of the security system should not be prevented by other factors, such as a power failure. Obviously, if a part of such a network is formed by ethernet infrastructure, such as network switches and/or media converters, then that infrastructure needs to be battery backed, and the power supply must be monitored. In some cases, the equipment must be able to withstand a power failure of 24 or even 60 hours. Such long standby times are unusual in IT infrastructure, but are quite common in the case of security systems. The equipment must be able to withstand a power failure of 24 or even 60 hours How this all fits together When selecting a system, it is usually most helpful to have a flexible system that can support a number of different deployment options. This is especially true if the system in question can support a combination of different interconnection types. For example, a single system that can contain a variety of interconnections can then be deployed in a very wide variety of systems where existing infrastructure may be used to aid in the design and deployment: Fibre connections – Many modern sites are pre-cabled with existing fibre connections which can be used to form a dedicated interconnection between system components which can be of the order of kilometres apart. Ethernet connectivity – With the increasing ubiquity of networking within premises, some elements of a security system can be deployed using the existing infrastructure. Repeater - For very large or densely packed systems, a device that can be used as a form of “repeater” can be extremely useful to permit very long interconnect cabling distances. Systems can be formed by utilising a fusion of all of the above connectivity methods Some security systems can be set up to enable multiple discrete access control modules to be deployed, connected to an existing ethernet network, and treated as a single ‘system’ by the management software, while retaining full offline functionality in the event the network becomes unavailable. Further, some systems can be formed by utilising a fusion of all of the above connectivity methods. In practice, of course some applications would suit a deployment that relied solely on ethernet connectivity. Some other applications, especially systems or parts of systems that are part of an intruder and/or holdup alarm system, would better suit a deployment using a dedicated proprietary bus network, and other systems would suit a combination of these communications options. Selecting a system that can be deployed in a variety of ways can be enormously helpful in providing the flexibility projects might demand.

Functionality beyond security: The advent of open platform cameras
Functionality beyond security: The advent of open platform cameras

The coronavirus (COVID-19) pandemic marks the biggest global disruption since World War II. While the ‘new normal’ after the crisis is still taking shape, consumers are apprehensive about the future. According to a recent survey, 60% of shoppers are afraid of going grocery shopping, with 73% making fewer trips to physical stores. Returning to the workplace is also causing unease, as 66% of employees report feeling uncomfortable about returning to work after COVID-19.  Businesses and employers are doing their best to alleviate these fears and create safe environments in and around their buildings. This also comes at tremendous costs for new safety measures and technologies – including updates to sanitation protocols and interior architecture – that protect against COVID-19. Costs in the billions that most businesses will face alone, without support from insurance and amidst larger macroeconomic challenges. Saving costs and increasing security But what if building operators, retail shop owners, and other stakeholders could save costs by leveraging new functionality from their existing security infrastructure? More specifically, expanding the use of current-generation security cameras – equipped with AI-driven image analysis capabilities – beyond the realm of security and into meeting new health regulations. This is exactly where video analytics algorithms come into play. And in the next step, a new evolutionary approach towards open security camera platforms promises new opportunities. Security cameras have evolved from mere image capturing devices into complex data sensors Over the past decade, security cameras have evolved from mere image capturing devices into complex data sensors. They provide valuable data that can be analysed and used in beneficial ways that are becoming the norm. Since 2016, Bosch has offered built-in Video Analytics as standard on all its IP cameras. On one hand, this enables automated detection of security threats more reliably than human operators. And on the other hand, video analytics collect rich metadata to help businesses improve safety, increase efficiency, reduce costs, and create new value beyond security. Expanding camera functionality beyond security Today, we have ‘smart’ security cameras with built-in video analytics to automatically warn operators of intruders, suspicious objects and dangerous behaviors. The rich metadata from several cameras on the same network can also be consolidated by making use of an intelligent software solution. It offers so-called pre-defined widgets to provide business intelligence by measuring area fill levels, counting building occupancy and detecting the formation of crowds. In combination with live video stream data, these insights enable heightened situational awareness to security operators. What’s more, operators are free to set their own parameters – like maximum number of occupants in a space and ‘off limit’ areas – to suit their needs. These user-centric widgets also come in handy in dealing with the coronavirus pandemic. Specific widgets can trigger an alarm, public announcement or trigger a 'traffic light' when the maximum number of people in a space is exceeded. Building operators can also use available intelligence such as foot traffic ‘heat maps’ to identify problem areas that tend to become congested and place hand sanitiser stations at heavily frequented hotspots. At the same time, the option to perform remote maintenance on these systems limits the exposure of technicians in the field during the pandemic. Again, the underlying camera hardware and software already exist. Cameras will be able to ‘learn’ future functionality to curb the spread of the coronavirus Looking ahead, cameras with video analytic and neural network-based analytic capabilities will be able to ‘learn’ future functionality to curb the spread of the coronavirus. For instance, cameras could monitor distances between individuals and trigger voice announcements when social distancing guidelines are violated. Facial recognition software can be trained to monitor personal protective equipment (PPE) compliance and sound alerts for persons entering buildings without masks. The technical requirements are already in place. The task at hand is to deliver these new functionalities to cameras at scale, which is where open camera platforms hold the key. Why open camera operating systems? When it comes to innovating future camera applications that extend beyond security, no hardware manufacturer should go at it alone. Instead, an open platform approach provides the environment for third-party developers to innovate and market new functions. In essence, an open platform principle allows customers and users to change the behavior of devices by adding software afterwards. This software can either be found in an app store or can be self-developed. For a precedent, we can look at the mobile phone industry. This is where software ecosystems like Android and Apple’s iOS have become the norm. They have also become major marketplaces, with the Apple App Store generating $519 billion in billings on 2019, as users use their phones for far more than just making phone calls. In the same way, intelligent cameras will be used far beyond classic video applications in the future. To get there, adopting an open platform principle is essential for a genuine transformation on an industry level. But establishing an open platform principle in the fragmented video security industry demands a cooperative approach. In 2018 Bosch started a fully owned start-up company, Security & Safety Things, and became one of five founding members of OSSA (Open Security & Safety Alliance). With more than 40 members, the Alliance has collectively created the first Technology Stack for “open” video security devices. This includes the OSSA Application Interface Specification and Compliant Device Definition Specification. An open camera platform for innovating future functionality  Based on OSSA’s common APIs, collective approach on data security and core system requirements for video security cameras, the first camera manufacturers were able to build video security cameras that adopt an open platform principle. Further fueling innovation, OSSA focused on driving the creation of one centralised marketplace to unite demand and supply in the market. Camera devices that are built in accordance with OSSA’s Technology Stack, so-called “Driven by OSSA” devices, can benefit from this marketplace which consists of three pillars: a development environment, an application store, and a device management portal. Security & Safety Things has advanced OSSA’s open camera platform concept, built this marketplace for the security and safety industry and has developed the open OS that powers the first “Driven by OSSA” devices. Making it quick and simple to customise security solutions by installing and executing multiple apps This year, Bosch, as one of the first camera manufacturers, introduces the new INTEOX generation of open platform cameras. To innovate a future beyond security functionality, INTEOX combines built-in Intelligent Video Analytics from Bosch, an open Operating System (OS), and the ability to securely add software apps as needed. Thanks to the fully open principle, system integrators are free to add apps available in the application store, making it quick and simple to customise security solutions by installing and executing multiple apps on the INTEOX platform. In turn, app developers can now focus on leveraging the intelligence and valuable data collected by analytics-equipped cameras for their own software developments to introduce new exciting possibilities of applying cameras. These possibilities are needed as smart buildings and IoT-connected technology platforms continue to evolve. And they will provide new answers to dealing with COVID-19. The aforementioned detection of face masks and PPE via facial detection algorithms is just one of manifold scenarios in which new apps could provide valuable functionality. Contact tracing is another field where a combination of access control and video analytics with rich metadata can make all the difference. Overall, open camera platforms open a future where new, complex functionality that can save lives, ensure business continuity and open new business opportunities will arrive via something as simple as a software update. And this is just the beginning.