Today, almost every employee carries with them a smart device that can send messages, capture, and record images and increasingly live-stream video and audio, all appended with accurate location and time stamping data. Provide a way for staff to easily feed data from these devices directly to the control room to report an incident and you have created a new and extremely powerful ‘sensor’, capable of providing accurate, verified, real-time multi-media incident information.

You need only to watch the television when a major incident is being reported. The images are often from a witness at the scene who recorded it on their device. It is madness that it has until now been easier for people to share information around the world via Facebook and YouTube etc, in a matter of minutes, than it is to transmit it to those that need to coordinate the response.

The public as an additional security and safety sensor

In the UK, a marketing campaign designed by government, police and the rail industry is currently running. Aiming to help build a more vigilant network on railways across the country and raise awareness of the vital role the public can play in keeping themselves and others safe, the ‘See It. Say It. Sorted’ campaign urges train passengers and station visitors to report any unusual items by speaking to a member of rail staff, sending a text, or calling a dedicated telephone number.

Essentially, the campaign is asking the public to be an additional safety and security sensor. However, with the help of the latest mobile app technology, it is possible to take things to a whole new level and this is being demonstrated by a large transport network in the US.

This organisation recognised that the ideal place to begin its campaign of connecting smart devices to the control room as an additional sensor, was by engaging its 10,000 employees (incidentally, this is approximately twice the number of surveillance cameras it has). These employees have been encouraged to install a dedicated app on their mobile devices that enables them to transmit important information directly to the control room, as well as a panic button for their own safety. This data can be a combination of images, text, audio, video and even live-streaming, to not only make the control room aware of the situation but give them eyes and ears on the ground.

For the control room operator,
the insights being fed to them
from this ‘sensor’ have arguably
more value than any other as they
provide pinpoint accurate and
relevant information

Combatting control room information overload

For the control room operator, the insights being fed to them from this ‘sensor’ have arguably more value than any other as they provide pinpoint accurate and relevant information. For example, if an alert comes in about a fire on platform 3, the operator doesn’t necessarily require any of the information from the other sensors, nor does he need to verify it’s not a false alarm. He knows that the information received has been ‘verified’ in-person (it is also time and location stamped) and that there is an employee located in the vicinity of the incident, who they can now directly communicate with for a real-time update and to co-ordinate the appropriate response.

Compare this to a 24/7 video stream from 5000 cameras. It is in stark contrast to the typical issue of sensors creating information overload. The employee only captures and transmits the relevant information, so in essence, the filtering of information is being done at source, by a human sensor that can see, hear, and understand what is happening in context. So, if an intruder is climbing over a fence you no longer need to rely on the alert from the perimeter alarm and the feed from the nearest camera, you simply send a patrol to the location based on what the person is telling you.

Furthermore, if the control room is operating a Situation Management/PSIM system it will trigger the opening of a new incident, so when the operator receives the information they are also presented with clear guidance and support regarding how to best manage and respond to that particular situation.

The hardware infrastructure is already in place as most people are already in possession of a smart device, either through work or personally
Transport networks are using staff and the public as additional safety and security sensors

Application of roaming smart sensors

To be clear, this is not to suggest that we no longer need these vitally important sensors, because we do. However, one major reason that we have so many sensors is because we cannot have people stationed everywhere. So, in the case of the US transit company, it has been able to add a further 10,000 roaming smart sensors. This can be applied to other industries such as airports, ports, warehouse operations, stadiums, and arenas etc.

Now, imagine the potential of widening the scope to include the public, to truly incorporate crowdsourcing in to the day-to-day security function. For example, in May, it was reported that West Midlands Police in the UK would be piloting an initiative that is asking citizens to upload content relating to offences being committed.

Leveraging existing hardware infrastructure

Typically, when introducing any form of new security sensor or system, it is expected to be an expensive process. However, the hardware infrastructure is already in place as most people are already in possession of a smart device, either through work or personally. What’s more, there is typically an eager appetite to be a good citizen or employee, just so long as it isn’t too much of an inconvenience.

Innovations in smart mobile devices has moved at such a pace that whilst many security professionals debate if and how to roll-out body-worn-cameras, members of the public are live-streaming from their full HD and even 4K ready phones. The technology to make every employee a smart sensor has been around for some time and keeps getting better and better, and it is in the pockets of most people around the world. What is different now is the potential to harness it and efficiently bring it in to the security process. All organisations need to do is know how to switch it on and leverage it.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Erez Goldstein Marketing Director, Qognify

In case you missed it

Panasonic AI-driven cameras empower an expanding vision of new uses
Panasonic AI-driven cameras empower an expanding vision of new uses

Imagine a world where video cameras are not just watching and reporting for security, but have an even wider positive impact on our lives. Imagine that cameras control street and building lights, as people come and go, that traffic jams are predicted and vehicles are automatically rerouted, and more tills are opened, just before a queue starts to form. Cameras with AI capabilities Cameras in stores can show us how we might look in the latest outfit as we browse. That’s the vision from Panasonic about current and future uses for their cameras that provide artificial intelligence (AI) capabilities at the edge. Panasonic feels that these types of intelligent camera applications are also the basis for automation and introduction of Industry 4.0, in which processes are automated, monitored and controlled by AI-driven systems. 4K network security cameras The company’s i-PRO AI-capable camera line can install and run up to three AI-driven video analytic applications Panasonic’s 4K network security cameras have built-in AI capabilities suitable for this next generation of intelligent applications in business and society. The company’s i-PRO AI-capable camera line can install and run up to three AI-driven video analytic applications. The AI engine is directly embedded into the camera, thus reducing costs and Panasonic’s image quality ensures the accuracy of the analytics outcome. FacePRO facial recognition technology Panasonic began advancing AI technology on the server side with FacePRO, the in-house facial recognition application, which uses AI deep learning capabilities. Moving ahead, they transitioned their knowledge of AI from the server side to the edge, introducing i-PRO security cameras with built-in AI capabilities last summer, alongside their own in-house analytics. Moreover, in line with the Panasonic approach to focus more on collaboration with specialist AI software developers, a partnership with Italian software company, A.I. Tech followed in September, with a range of intelligent applications, partially based on deep learning. Additional collaborations are already in place with more than 10 other developers, across the European Union, working on more future applications. i-PRO AI-capable security cameras Open systems are an important part of Panasonic’s current approach. The company’s i-PRO AI-capable cameras are an open platform and designed for third-party application development, therefore, applications can be built or tailored to the needs of an individual customer. Panasonic use to be a company that developed everything in-house, including all the analytics and applications. “However, now we have turned around our strategy by making our i-PRO security cameras open to integrate applications and analytics from third-party companies,” says Gerard Figols, Head of Security Solutions at Panasonic Business Europe. Flexible and adapting to specific customer needs This new approach allows the company to be more flexible and adaptable to customers’ needs. “At the same time, we can be quicker and much more tailored to the market trend,” said Gerard Figols. He adds, “For example, in the retail space, enabling retailers to enhance the customer experience, in smart cities for traffic monitoring and smart parking, and by event organisers and transport hubs to monitor and ensure safety.” Edge-based analytics offer multiple benefits over server-based systems Edge-based analytics Edge-based analytics offer multiple benefits over server-based systems. On one hand, there are monetary benefits - a cost reduction results from the decreased amount of more powerful hardware required on the server side to process the data, on top of reduction in the infrastructure costs, as not all the full video stream needs to be sent for analysis, we can work solely with the metadata. On the other hand, there are also advantages of flexibility, as well as reliability. Each camera can have its own individual analytic setup and in case of any issue on the communication or server side, the camera can keep running the analysis at the edge, thereby making sure the CCTV system is still fully operational. Most importantly, systems can keep the same high level of accuracy. Explosion of AI camera applications We can compare the explosion of AI camera applications to the way we experienced it for smartphone applications" “We can compare the explosion of AI camera applications to the way we experienced it for smartphone applications,” said Gerard Figols, adding “However, it doesn’t mean the hardware is not important anymore, as I believe it’s more important than ever. Working with poor picture quality or if the hardware is not reliable, and works 24/7, software cannot run or deliver the outcome it has been designed for.” As hardware specialists, Figols believes that Panasonic seeks to focus on what they do best - Building long-lasting, open network cameras, which are capable of capturing the highest quality images that are required for the latest AI applications, while software developers can concentrate on bringing specialist applications to the market. Same as for smartphones, AI applications will proliferate based on market demand and succeed or fail, based on the value that they deliver. Facial recognition, privacy protection and cross line technologies Panasonic has been in the forefront in developing essential AI applications for CCTV, such as facial recognition, privacy protection and cross line. However, with the market developing so rapidly and the potential applications of AI-driven camera systems being so varied and widespread, Panasonic quickly realised that the future of their network cameras was going to be in open systems, which allow specialist developers and their customers to use their sector expertise to develop their own applications for specific vertical market applications, while using i-PRO hardware. Metadata for detection and recognition Regarding privacy, consider that the use of AI in cameras is about generating metadata for the detection and recognition of patterns, rather than identifying individual identities. “However, there are legitimate privacy concerns, but I firmly believe that attitudes will change quickly when people see the incredible benefits that this technology can deliver,” said Gerard Figols, adding “I hope that we will be able to redefine our view of cameras and AI, not just as insurance, but as life advancing and enhancing.” i-PRO AI Privacy Guard One of the AI applications that Panasonic developed was i-PRO AI Privacy Guard Seeking to understand and appreciate privacy concerns, one of the AI applications that Panasonic developed was i-PRO AI Privacy Guard that generates data without capturing individual identities, following European privacy regulations that are among the strictest in the world. Gerard Fogils said, “The combination of artificial intelligence and the latest generation open camera technology will change the world’s perceptions from Big Brother to Big Benefits. New applications will emerge as the existing generation of cameras is updated to the new open and intelligent next generation devices, and the existing role of the security camera will also continue.” Future scope of AI and cameras He adds, “Not just relying on the security cameras for evidence when things have gone wrong, end users will increasingly be able to use AI and the cameras with much higher accuracy to prevent false alarms and in a proactive way to prevent incidents." Gerard Fogils concludes, “That could be monitoring and alerting when health and safety guidelines are being breached or spotting and flagging patterns of suspicious behaviour before incidents occur.”

Why visualisation platforms are vital for an effective Security Operation Centre (SOC)
Why visualisation platforms are vital for an effective Security Operation Centre (SOC)

Display solutions play a key role in SOCs in providing the screens needed for individuals and teams to visualise and share the multiple data sources needed in an SOC today. Security Operation Centre (SOC) Every SOC has multiple sources and inputs, both physical and virtual, all of which provide numerous data points to operators, in order to provide the highest levels of physical and cyber security, including surveillance camera feeds, access control and alarm systems for physical security, as well as dashboards and web apps for cyber security applications. Today’s advancements in technology and computing power not only have increasingly made security systems much more scalable, by adding hundreds, if not thousands, of more data points to an SOC, but the rate at which the data comes in has significantly increased as well. Accurate monitoring and surveillance This has made monitoring and surveillance much more accurate and effective, but also more challenging for operators, as they can’t realistically monitor the hundreds, even thousands of cameras, dashboards, calls, etc. in a reactive manner. Lacking situational awareness is often one of the primary factors in poor decision making In order for operators in SOC’s to be able to mitigate incidents in a less reactive way and take meaningful action, streamlined actionable data is needed. This is what will ensure operators in SOC truly have situational awareness. Situational awareness is a key foundation of effective decision making. In its simplest form, ‘It is knowing what is going on’. Lacking situational awareness is often one of the primary factors in poor decision making and in accidents attributed to human error. Achieving ‘true’ situational awareness Situational awareness isn’t just what has already happened, but what is likely to happen next and to achieve ‘true’ situational awareness, a combination of actionable data and the ability to deliver that information or data to the right people, at the right time. This is where visualisation platforms (known as visual networking platforms) that provide both the situational real estate, as well as support for computer vision and AI, can help SOCs achieve true situational awareness Role of computer vision and AI technologies Proactive situational awareness is when the data coming into the SOC is analysed in real time and then, brought forward to operators who are decision makers and key stakeholders in near real time for actionable visualisation. Computer vision is a field of Artificial Intelligence that trains computers to interpret and understand digital images and videos. It is a way to automate tasks that the human visual system can also carry out, the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. There are numerous potential value adds that computer vision can provide to operation centres of different kinds. Here are some examples: Face Recognition: Face detection algorithms can be applied to filter and identify an individual. Biometric Systems: AI can be applied to biometric descriptions such as fingerprint, iris, and face matching. Surveillance: Computer vision supports IoT cameras used to monitor activities and movements of just about any kind that might be related to security and safety, whether that's on the job safety or physical security. Smart Cities: AI and computer vision can be used to improve mobility through quantitative, objective and automated management of resource use (car parks, roads, public squares, etc.) based on the analysis of CCTV data. Event Recognition: Improve the visualisation and the decision-making process of human operators or existing video surveillance solutions, by integrating real-time video data analysis algorithms to understand the content of the filmed scene and to extract the relevant information from it. Monitoring: Responding to specific tasks in terms of continuous monitoring and surveillance in many different application frameworks: improved management of logistics in storage warehouses, counting of people during event gatherings, monitoring of subway stations, coastal areas, etc. Computer Vision applications When considering a Computer Vision application, it’s important to ensure that the rest of the infrastructure in the Operation Centre, for example the solution that drives the displays and video walls, will connect and work well with the computer vision application. The best way to do this of course is to use a software-driven approach to displaying information and data, rather than a traditional AV hardware approach, which may present incompatibilities. Software-defined and open technology solutions Software-defined and open technology solutions provide a wider support for any type of application the SOC may need Software-defined and open technology solutions provide a wider support for any type of application the SOC may need, including computer vision. In the modern world, with everything going digital, all security services and applications have become networked, and as such, they belong to IT. AV applications and services have increasingly become an integral part of an organisation’s IT infrastructure. Software-defined approach to AV IT teams responsible for data protection are more in favour of a software-defined approach to AV that allow virtualised, open technologies as opposed to traditional hardware-based solutions. Software’s flexibility allows for more efficient refreshment cycles, expansions and upgrades. The rise of AV-over-IP technologies have enabled IT teams in SOC’s to effectively integrate AV solutions into their existing stack, greatly reducing overhead costs, when it comes to technology investments, staff training, maintenance, and even physical infrastructure. AV-over-IP software platforms Moreover, with AV-over-IP, software-defined AV platforms, IT teams can more easily integrate AI and Computer Vision applications within the SOC, and have better control of the data coming in, while achieving true situational awareness. Situational awareness is all about actionable data delivered to the right people, at the right time, in order to address security incidents and challenges. Situational awareness is all about actionable data delivered to the right people Often, the people who need to know about security risks or breaches are not physically present in the operation centres, so having the data and information locked up within the four walls of the SOC does not provide true situational awareness. Hyper-scalable visual platforms Instead there is a need to be able to deliver the video stream, the dashboard of the data and information to any screen anywhere, at any time — including desktops, tablets phones — for the right people to see, whether that is an executive in a different office or working from home, or security guards walking the halls or streets. New technologies are continuing to extend the reach and the benefits of security operation centres. However, interoperability plays a key role in bringing together AI, machine learning and computer vision technologies, in order to ensure data is turned into actionable data, which is delivered to the right people to provide ‘true’ situational awareness. Software-defined, AV-over-IP platforms are the perfect medium to facilitate this for any organisations with physical and cyber security needs.

What is the best lesson you ever learned from an end user?
What is the best lesson you ever learned from an end user?

Serving customer needs is the goal of most commerce in the physical security market. Understanding those needs requires communication and nuance, and there are sometimes surprises along the way. But in every surprising revelation – and in every customer interaction – there is opportunity to learn something valuable that can help to serve the next customer’s needs more effectively. We asked this week’s Expert Panel Roundtable: what was the best lesson you ever learned from a security end user customer?