Considering how much the modern smartphone has become a common everyday tool and cultural icon, it’s hard to believe it has only been with us for a relatively short space of time. The first Apple iPhone was launched in 2007 and yet in a little over a decade the smartphone has become as essential as our keys or wallet.

From its conception as a multi-faceted communications device, it has morphed into something far more integrated in our daily lives. Services such as Apple Pay, Android Pay and PayPal have seen the smartphone become a credible replacement for cash and cash cards, but equally, it is possible to replace access cards and keys as well.Smartphones can easily receive authentication credentials remotely and access can be confirmed or denied instantly

The ability to accurately authenticate an individual and the applications this offers for security purposes, is something that the security industry needs to continue to embrace and further promote to our customers.

Considerable advantages

Most security professionals understand the potential benefits of using mobile device authentication, with flexibility being the key advantage. Smartphones can easily receive authentication credentials remotely and access can be confirmed or denied instantly. Equally, smartphones already contain many secure options to ensure they are only used by the authorised user – fingerprint and face recognition, as well as pattern authentication and PIN, being prime examples.

Unfortunately, there is still a lack of awareness amongst some security operators, customers and the public of these exciting benefits. Potentially there may also be some reluctance, in certain quarters, to trusting a mobile device with physical security. A lack of trust in seemingly ‘unproven’ technology is not unusual, but the security industry needs to demonstrate reliability along with the considerable security and convenience benefits of using it.

Trusted part of security network

Many smart devices already securely bind the mobile device with the right person by using 2-factor authenticationMobile device security needs to earn its trust, in much the same way as any other new ground-breaking application. In fairness to the doubters, it’s not hard to imagine how much of a risk a badly protected mobile device could be to any secure network!

There are two key obstacles that smartphones need to clear before they can become a trusted part of the security network though. Firstly, that they are secure enough to be trusted as part of a security network, and secondly that they can reliably identify an authorised user in a real-world environment.

Many smart devices already securely bind the mobile device with the right person by using 2-factor authentication. For example, this could combine a PIN code with the fingerprint or face of the authorised individual.

In areas with particularly high security, you could also implement a wall-mounted biometric reader (fingerprint, facial recognition or iris scan) to add a further level of protection and ensure there is no wrongful use of the mobile device.

Security tokens or access cards are typically rigid in their programming, only allowing access to certain areas
Security tokens or access cards are typically rigid in their programming, only allowing access to certain areas

Security by location

With its many and varied functions, undoubtedly one of the most useful systems on any smartphone is its GPS location tracking. It’s also a perfect tool to assist with security systems interaction.A benefit of using smart device authentication is the cost savings over operating traditional tokens

Consider any secure facility – it will feature different levels of access. This can vary from a humble canteen and break-out areas, right through to secured doors around potentially dangerous or highly sensitive areas - such as plant rooms, or even a nuclear facility!

Security tokens or access cards are typically rigid in their programming, only allowing access to certain areas. A smartphone, however, can be granted or denied access depending on the location of the request by the individual – GPS literally adds a level of extra intelligence to security.

Personal items

Using QR codes seem to be a simple but reliable identity and access control authentication option Mobile devices tend to be guarded and protected with the same concern as your money or your keys. Many of us literally carry our mobile device everywhere with us, so they are relatively unlikely to be misplaced or lost – certainly in comparison to a key card for example.

Also, think about how often you use or hold your smartphone – some estimates suggest 2,600 times each day! With that level of interaction, you’ll be aware very quickly if it’s been misplaced, not least because of the inconvenience and cost to replace it. This level of personal connection makes it perfect for use with security systems.

Cost savings

Another obvious benefit of using smart device authentication is the cost savings over operating traditional tokens. No more plastic badges, access cards, lanyards, printers and consumables used to administer security. This is something the security industry really needs to shout about!

It will come as no surprise to hear that smartphones are exceptionally common too. Figures suggest that in 2015 there were nearly 41m in use in the UK and this is predicted to rise to 54m by 2022. With the UK population being just over 65m, that is a very high percentage of people already carrying this technology.

Using a resource that people already have, and which is highly secure, makes unquestionable financial as well as practical sense.

GPS location for smartphone access control
GPS location tracking is a perfect tool to assist with security systems interaction

Integrated technology

Agreeing on common and shared open protocols has unfortunately been one of the stumbling blocks for the security industry in adapting to a predominantly smartphone authentication approach. NFC (Near Field Communications) technology in mobile phones and smart devices has failed to be the universal success it promised.Not everyone has an iPhone, but it is such an important segment of the market for customers

Mobile technology trends have dictated to the systems that use it. Apple’s earlier (Pre iOS 11) decision to restrict the use of NFC to Apple Pay on its devices has had a profound effect on the implementation of NFC in other applications too. Not everyone has an iPhone, but it is such an important segment of the market that other manufacturers are wary of how customers will be able to use any new technology.

We have seen a much bigger focus on using Bluetooth Low Energy technology on mobile devices instead. With providers such as HID Global, STid in France and Nedap in the Netherlands now concentrating on developing Bluetooth Low Energy readers and mobile credential applications, this seems like a highly credible alternative.

Along with NFC and Bluetooth Low Energy options, there also seems to be a lot of interest in using QR codes as simple but reliable identity and access control authentication. These can easily be displayed on a screen or printed if necessary, giving great flexibility over the type of technology that is used in the future.

Upgrading existing security systems

There are strong arguments for many businesses to continue using MIFARE+ systems if they suit operations well We are steadily seeing the signs of smartphone authentication replacing the cards and tokens we have been familiar with. However, many consumers still want options rather than to just be railroaded down one path.

A business that has invested in cards or tokens will want to use that technology investment fully. The changes will come when readers are updated – this is when security specifiers and installers need to promote the advantages of dual-technology readers, which offer options to include smartphone authentication into the mix.

There is still considerable diversity amongst smart devices, the operating systems they use, and the security technology employed by each. Android, Apple iOS and Blackberry devices all vary with regards to the biometric authentication available, so security administrators may need to be flexible on the types of authentication they accept.

Interestingly, card technology has also progressed at an astonishing speed too – with MIFARE+ proving to be a highly cost-effective, practical and secure system that can easily be integrated. There are strong arguments for many businesses to continue using these systems if they suit operations well.

Android, Apple iOS and Blackberry devices all vary with regards to the biometric authentication available, so security administrators may need to be flexible on the types of authentication they accept
NFC (Near Field Communications) technology in mobile phones and smart devices has failed to be the universal success it promised

Hybrid systems

A hybrid approach may be the best answer for many security operators. This means those who choose to enjoy the benefits in terms of flexibility and convenience of smartphone authentication can do so, whilst those who are more hesitant can continue to use more traditional methods.

A hybrid approach may be the best answer for many security operators

Larger organisations may find that the swap over is a slower and more gradual process, whilst smaller start-up businesses may prefer to jump to a smartphone-based approach straight away. If security systems are well integrated but modular in their approach, then it becomes much simpler to evolve as time goes on.

Embracing the benefits

Using their app-based systems architecture, smartphones are ideally placed to evolve with security systems in the future. There are many benefits for the security industry and our customers, but we need to remember that this move will involve a culture change for many security operators and users.

The security industry needs to be mindful and respectful of any anxiety, but also be positive and promote the considerable benefits mobile authentication offers.

Download PDF version

Author profile

John Davies Managing Director, TDSi

John joined TDSi in 2003 when it was owned by Norbain SD Limited and led the management buyout in February 2005. TDSi manufactures electronic access control and integrated security systems. Export sales have grown from 25% of the business to 40+%.

In case you missed it

Adapting servers for IP video surveillance systems: Why manufacturers struggle
Adapting servers for IP video surveillance systems: Why manufacturers struggle

Security integrators are often tasked with a multitude of responsibilities which could include a variety of installation, integration or design tasks made up of sprinkler systems, fire alarms, access control, HVAC, video surveillance systems and networks; and then pile on maintenance, training and analytics. Traditionally, most security integrators have installation backgrounds but are now expected to be IT savvy, too. Even the most proficient IT professionals may not fully grasp the complexity of adapting computer servers for use with video systems. It’s not the area of expertise of security integrators as the complexities between IT data and video data are significant. Therefore, security integrators depend on system builders to provide solutions to meet the needs of video systems expertly and with few hassles. It’s a simple enough ask, but not so easy to deliver. Tom Larson, Chief Technology Officer, BCDVideo, lists some of the challenges: The gap between reality and customer expectations End users should expect a security integrator to provide services and a wide product line to ensure the right equipment for any size job Sometimes there is a gap between what a security integrator expects from a video surveillance solution (in terms of validation testing, dependability, technical support) and the performance of available choices, especially in the case of low-cost or generic equipment. Extra service and support are needed to bridge the gap. Unfortunately, some manufacturers entering the market have failed to deliver, and integrators (and their end user customers) have paid a price. The network is often overlooked Security integrators should pay special attention to engineering the network and calculating the bandwidth and storage needed for video projects, especially given how technology evolves so quickly. Security is an appliance-driven business, and integrators who just want to add another server to expand storage or functionality without configuring the network run the risk of i/o bottlenecks and other system failures. End users should expect a security integrator to provide services and a wide product line to ensure the right equipment for any size job. Unfortunately, traditional IT resellers are often married to a singular solution limiting their knowledge of a good fit for the job. Buying a video server based on a low price aggravates the problem, as “Frankensteined” or generic servers tend to generate additional costs over time Servers are mistakenly considered a one-time expense One mistake purchasing agents make and security integrators have a hard time quantifying is viewing video storage as a capital expense (as one more component of a security system) rather than considering ongoing operating expenses. Buying a video server based on a low price aggravates the problem. “Frankensteined” or generic servers tend to generate additional costs over time, such as firmware or supply chain issues, and some systems builders have failed to provide support to offset those costs. In fact, the high costs over time of supporting inexpensive servers have been unsustainable for some system builders, who have left integrators and end users holding the bag, and in some cases, the liability. Adapting to sustainable strategies “Systems builders to the video surveillance market must adapt and invest to meet the demands of security integrators’ expectations, and they need a business model that enables them to provide a substantial level of support and commitment,” says Larson. “Working with high-quality manufacturers and providing tried-and-tested, certified equipment upfront ensures manageable costs over the life of the system. Products that are fully tested and contain no firmware bugs ensure smoother installations. By providing adequate technical support to the security integrator and managing IT variables over the life of the system, the systems builder makes it possible for a security integrator to specify and install a video server as easily as any other system component.” Keeping IT professionals on staff to deal with server issues is cost-prohibitive for security integrators Taking a longer-term view and considering total cost of ownership is a more sustainable strategy for integrators, says Larson. Investing upfront in a higher-quality server is rewarded by dependability and lower service costs over the life of the system. And the lower costs of supporting a higher-quality server create a more sustainable business model for the integrator, thus ensuring the integrator and end user will have ongoing support. Adapting server technology to video applications Security integrators deliver a different skill set than IT integrators, who tend to be more hands-on in terms of updating firmware and providing maintenance. Keeping IT professionals on staff to deal with server issues is cost-prohibitive for security integrators, who therefore depend on systems builders to provide that expertise. They develop a long-term relationship with a systems builder they can depend on to meet their needs for each job. Larson says the best scenario for a security integrator is a combination of a high-quality server systems builder that understands the specific needs of the security integrator market. Adapting server technology to video applications requires knowledge of both disciplines. Dependable technology adapted to the needs of the video channel ensures successful installations and happy, long-term customers.

New Year’s Resolutions to counter web and mobile application security breaches in 2019
New Year’s Resolutions to counter web and mobile application security breaches in 2019

With the coming of a New Year, we know these things to be certain: death, taxes, and… security breaches. No doubt, some of you are making personal resolutions to improve your physical and financial health. But what about your organisation’s web and mobile application security? Any set of New Year’s resolutions is incomplete without plans for protecting some of the most important customer touch points you have — web and mobile apps. Every year, data breaches grow in scope and impact. Security professionals have largely accepted the inevitability of a breach and are shifting their defense-in-depth strategy by including a goal to reduce their time-to-detect and time-to-respond to an attack. Despite these efforts, we haven’t seen the end of headline-grabbing data breaches like recent ones affecting brands such as Marriott, Air Canada, British Airways and Ticketmaster. App-level threats The apps that control or drive these new innovations have become today’s endpoint The truth of the matter is that the complexity of an organisation’s IT environment is dynamic and growing. As new technologies and products go from production into the real world, there will invariably be some areas that are less protected than others. The apps that control or drive these new innovations have become today’s endpoint — they are the first customer touch point for many organisations. Bad actors have realised that apps contain a treasure trove of information, and because they are often left unprotected, offer attackers easier access to data directly from the app or via attacks directed at back office systems. That’s why it’s imperative that security organisations protect their apps and ensure they are capable of detecting and responding to app-level threats as quickly as they arise. It’s imperative that security organisations protect their apps and ensure they are capable of detecting and responding to app-level threats as quickly as they arise In-progress attack detection Unfortunately, the capability to detect in-progress attacks at the app level is an area that IT and security teams have yet to address. This became painfully obvious in light of the recent Magecart attacks leveraged against British Airways and Ticketmaster, among others. Thanks to research by RiskIQ and Volexity, we know that the Magecart attacks target the web app client-side. During a Magecart attack, the transaction processes are otherwise undisturbed Attackers gained write access to app code, either by compromising or using stolen credentials, and then inserted a digital card skimmer into the web app. When customers visited the infected web sites and completed a payment form, the digital card skimmer was activated where it intercepted payment card data and transmitted it to the attacker(s). Data exfiltration detection During a Magecart attack, the transaction processes are otherwise undisturbed. The target companies receive payment, and customers receive the services or goods they purchased. As a result, no one is wise to a breach — until some 380,000 customers are impacted, as in the case of the attack against British Airways. The target companies’ web application firewalls and data loss prevention systems didn’t detect the data exfiltration because those controls don’t monitor or protect front-end code. Instead, they watch traffic going to and from servers. In the case of the Magecart attacks, the organisation was compromised and data was stolen before it even got to the network or servers. Today’s proven obfuscation techniques can help prevent application reverse engineering, deter tampering, and protect personal identifiable information and API communications Best practice resolutions The Magecart attacks highlight the need to apply the same vigilance and best practices to web and mobile application source code that organisations apply to their networks—which brings us to this year’s New Year’s resolutions for protecting your app source code in 2019: Alert The key to success is quickly understanding when and how an app is being attacked First, organisations must obtain real-time visibility into their application threat landscape given they are operating in a zero-trust environment. Similar to how your organisation monitors the network and the systems connected to it, you must be able to monitor your apps. This will allow you to see what users are doing with your code so that you can customise protection to counter attacks your app faces. Throughout the app’s lifecycle, you can respond to malicious behavior early, quarantine suspicious accounts, and make continuous code modifications to stay a step ahead of new attacks. Protect Next, informed by threat analytics, adapt your application source code protection. Deter attackers from analysing or reverse engineering application code through obfuscation. Today’s proven obfuscation techniques can help prevent application reverse engineering, deter tampering, and protect personal identifiable information and API communications. If an attacker tries to understand app operation though the use of a debugger or in the unlikely event an attacker manages to get past obfuscation, threat analytics will alert you to the malicious activity while your app begins to self-repair attacked source code or disable portions of the affected web app. The key to success is quickly understanding when and how an app is being attacked and taking rapid action to limit the risk of data theft and exfiltration. Protecting encryption keys is often overlooked but should be considered a best practice as you forge into the new year with a renewed commitment to app security to ensure your organisation’s health and well-being in 2019 Encrypt Finally, access to local digital content and data, as well as communications with back office systems, should be protected by encryption as a second line of defense, after implementing app protection to guard against piracy and theft. However, the single point of failure remains the instance at which the decryption key is used. Effective encryption requires a sophisticated implementation of White-Box Cryptography This point is easily identifiable through signature patterns and cryptographic routines. Once found, an attacker can easily navigate to where the keys are constructed in memory and exploit them. Effective encryption requires a sophisticated implementation of White-Box Cryptography. One that combines a mathematical algorithm with data and code obfuscation techniques transforming cryptographic keys and related operations into indecipherable text strings. Protecting encryption keys is often overlooked but should be considered a best practice as you forge into the new year with a renewed commitment to app security to ensure your organisation’s health and well-being in 2019. Protecting applications against data breach According to the most recent Cost of a Data Breach Study by the Ponemon Institute, a single breach costs an average of $3.86 million, not to mention the disruption to productivity across the organisation. In 2019, we can count on seeing more breaches and ever-escalating costs. It seems that setting—and fulfilling—New Year’s resolutions to protect your applications has the potential to impact more than just your risk of a data breach. It can protect your company’s financial and corporate health as well. So, what are you waiting for?

How organisations can secure user credentials from data breaches and password hacks
How organisations can secure user credentials from data breaches and password hacks

In the age of massive data breaches, phishing attacks and password hacks, user credentials are increasingly unsafe. So how can organisations secure accounts without making life more difficult for users? Marc Vanmaele, CEO of TrustBuilder, explains. User credentials give us a sense of security. Users select their password, it's personal and memorable to them, and it's likely that it includes special characters and numbers for added security. Sadly, this sense is most likely false. If it's anything like the 5.4 billion user IDs on haveibeenpwned.com, their login has already been compromised. If it's not listed, it could be soon. Recent estimates state that 8 million more credentials are compromised every day. Ensuring safe access Data breaches, ransomware and phishing campaigns are increasingly easy to pull off. Cyber criminals can easily find the tools they need on Google with little to no technical knowledge. Breached passwords are readily available to cyber criminals on the internet. Those that haven’t been breached can also be guessed, phished or cracked using one of the many “brute-force” tools available on the internet. It's becoming clear that login credentials are no longer enough to secure your users' accounts. Meanwhile, organisations have a responsibility and an ever-stricter legal obligation to protect their users’ sensitive data. This makes ensuring safe access to the services they need challenging, particularly when trying to provide a user experience that won’t cause frustration – or worse, lose your customers’ interest. After GDPR was implemented across the European Union, organisations could face a fine of up to €20 million, or 4% annual global turnover Importance of data protection So how can businesses ensure their users can safely and simply access the services they need while keeping intruders out, and why is it so important to strike that balance? After GDPR was implemented across the European Union, organisations could face a fine of up to €20 million, or 4% annual global turnover – whichever is higher, should they seriously fail to comply with their data protection obligations. This alone was enough to prompt many organisations to get serious about their user’s security. Still, not every business followed suit. Cloud security risks Breaches were most commonly identified in organisations using cloud computing or where staff use personal devices According to a recent survey conducted at Infosecurity Europe, more than a quarter of organisations did not feel ready to comply with GDPR in August 2018 – three months after the compliance deadline. Meanwhile, according to the UK Government’s 2018 Cyber Security Breaches survey, 45% of businesses reported breaches or attacks in the last 12 months. According to the report, logins are less secure when accessing services in the cloud where they aren't protected by enterprise firewalls and security systems. Moreover, breaches were most commonly identified in organisations using cloud computing or where staff use personal devices (known as BYOD). According to the survey, 61% of UK organisations use cloud-based services. The figure is higher in banking and finance (74%), IT and communications (81%) and education (75%). Additionally, 45% of businesses have BYOD. This indicates a precarious situation. The majority of businesses hold personal data on users electronically and may be placing users at risk if their IT environments are not adequately protected. Hackers have developed a wide range of tools to crack passwords, and these are readily available within a couple of clicks on a search engine Hacking methodology In a recent exposé on LifeHacker, Internet standards expert John Pozadzides revealed multiple methods hackers use to bypass even the most secure passwords. According to John’s revelations, 20% of passwords are simple enough to guess using easily accessible information. But that doesn’t leave the remaining 80% safe. Hackers have developed a wide range of tools to crack passwords, and these are readily available within a couple of clicks on a search engine. Brute force attacks are one of the easiest methods, but criminals also use increasingly sophisticated phishing campaigns to fool users into handing over their passwords. Users expect organisations to protect their passwords and keep intruders out of their accounts Once a threat actor has access to one password, they can easily gain access to multiple accounts. This is because, according to Mashable, 87% of users aged 18-30 and 81% of users aged 31+ reuse the same passwords across multiple accounts. It’s becoming clear that passwords are no longer enough to keep online accounts secure. Securing data with simplicity Users expect organisations to protect their passwords and keep intruders out of their accounts. As a result of a data breach, companies will of course suffer financial losses through fines and remediation costs. Beyond the immediate financial repercussions, however, the reputational damage can be seriously costly. A recent Gemalto study showed that 44% of consumers would leave their bank in the event of a security breach, and 38% would switch to a competitor offering a better service. Simplicity is equally important, however. For example, if it’s not delivered in ecommerce, one in three customers will abandon their purchase – as a recent report by Magnetic North revealed. If a login process is confusing, staff may be tempted to help themselves access the information they need by slipping out of secure habits. They may write their passwords down, share them with other members of staff, and may be more susceptible to social engineering attacks. So how do organisations strike the right balance? For many, Identity and Access Management solutions help to deliver secure access across the entire estate. It’s important though that these enable simplicity for the organisation, as well as users. Organisations need an IAM solution that will adapt to both of these factors, providing them with the ability to apply tough access policies when and where they are needed and prioritising swift access where it’s safe to do so Flexible IAM While IAM is highly recommended, organisations should seek solutions that offer the flexibility to define their own balance between a seamless end-user journey and the need for a high level of identity assurance. Organisations’ identity management requirements will change over time. So too will their IT environments. Organisations need an IAM solution that will adapt to both of these factors, providing them with the ability to apply tough access policies when and where they are needed and prioritising swift access where it’s safe to do so. Importantly, the best solutions will be those that enable this flexibility without spending significant time and resource each time adaptations need to be made. Those that do will provide the best return on investment for organisations looking to keep intruders at bay, while enabling users to log in safely and simply.