Facial recognition has a long history dating back to the 1800s. To track down criminals, such as infamous bandits Jesse Woodson James and Billy the Kid, law enforcement would place “Wanted Alive or Dead” posters advertising bounties and soliciting public cooperation to help locate and even apprehend the alleged criminals. In addition to the bounty, these posters would include a photo and brief description of the crime, which would then be circulated to law enforcement agencies around the country and displayed in every US Post Office to speed up apprehension.

Facial recognition

Advancements in artificial intelligence and biometric technology have led to the widespread use of computerised facial recognition

Today, technology such as social media, television and other more specialised communication networks play a more influential role in the recognition process. Advancements in artificial intelligence and biometric technology, including the development of Machine Learning capabilities, have led to increased accuracy, accessibility and the widespread use of computerised facial recognition. The significance of this means that facial recognition can occur on an even larger scale and in more challenging environments.

This article will explore key milestones and technological advances that have resulted in the modern incarnation of facial recognition, before discussing the capabilities of cutting-edge “one-to-many” technology which is increasingly being used by counter-terror defence, police and security forces around the world.

Technology inception and developments

The technology was able to match 40 faces an hour, which was considered very impressive at the time

The 1960s marked the start of computerised facial recognition, when Woodrow Wilson (Woody) Bledsoe developed a way to classify faces using gridlines. Bledsoe’s facial recognition still required a large amount of human involvement because a person had to extract the co-ordinates of the face’s features from a photograph and enter this information into a computer. The technology was able to match 40 faces an hour (each face took approximately 90 seconds to be matched) which was considered very impressive at the time.

By the end of the 1960s, facial recognition had seen further development at the Stanford Research Institute where the technology proved to outperform humans in terms of accuracy of recognition (humans are notoriously bad at recognising people they don’t know). By the end of the century, the leading player in the field was a solution that came out of the University of Bochum in Germany – and the accuracy of this technology was such that it was even sold on to bank and airport customers.

From this stage on, the facial recognition market began to blossom, with error rates of automatic facial recognition systems decreasing by a factor of 272 from 1993 to 2010 according to US Government-sponsored evaluations.

The safety and security market requires near instant feedback on who a person matched against a watchlist is
The aim for facial technology is to achieve successful and accurate recognition on commonly available hardware like live CCTV feeds and standard computing hardware

Modern usage of facial recognition

Fast-forward to the modern day and facial recognition has become a familiar technology when using applications such as the iPhone X’s Face ID capability or MasterCard Identity Check, passport e-gates at airports and other security and access control points. These solutions implement a consensual form of identity verification, as the user has a vested interest in being identified.

This is a “one-to-one” facial recognition event, one person in front of the camera being compared to one identity either on a passport or the app. In these scenarios, the hardware is specifically developed for the application at hand, therefore technically much easier to accomplish.

Facial recognition can now be used in a variety of governmental and commercial environments The safety and security world brings a much more complex problem to solve – how to pick out a face in a moving and changing environment and compare it to several faces of interest. “One-to-many” facial recognition is a much harder problem to solve.

It’s even more challenging when the aim is to achieve successful and accurate recognition on commonly available hardware like live CCTV feeds and standard computing hardware. And unlike in the 1960’s where identifying a face every 90 seconds was acceptable; the safety and security market requires near instant feedback on who a person matched against a watchlist is.

Security and safety applications

The idea behind all facial recognition technologies is broadly the same: you start with an image of a person’s face (ideally a high quality one, although machine learning means that to a point we can now even use video without reducing accuracy). A fully front facing image is best, think a passport photo, but machine learning and new software has made this more flexible.

An algorithm converts this image into a numeric template, which cannot be converted back to an image and so represents a secure one way system. Every numeric template is different, even if it started out as an image of the same person, although templates from the same person are more similar than templates from different people.

The accuracy of facial recognition continues to increase alongside deployments in more challenging and complex environments What happens next sounds simple although the technology is extremely complex: templates of people’s faces are taken in real time and compared to those in the database. The technology identifies individuals by matching the numeric template of their face with all the templates saved in a database in a matter of seconds or milliseconds. To put this into perspective, imagine you are at the turnstiles of a busy train station looking for a person on the run.

Today’s facial recognition technology would be able to identify that person should they pass in view of a CCTV camera, as well as notify the police of any additional persons of interest, whether they are a known terrorist or missing vulnerable person on an entirely separate watch list.

Because of technical progression, facial recognition can now be used in a variety of governmental and commercial environments, from identifying barred hooligans attempting entry at a football stadium or helping self-excluded gamblers at casino to overcome addiction.

Real-time assessments

The latest evolution of facial recognition pits the technology against an even more challenging application – directly matching individuals from body worn cameras for real time recognition for police officers on the beat. This capability equips first responders with the ability to detect a person from a photo and verify their identity with assurance.

The broader implication for this means that every interaction, such as stop and search or arrest, can be supported by real-time facial recognition which will see cases of mistaken identity driven down on the streets. First responders can now for the first time be deployed and furnished with the ability to identify wider groups of people of interest with a degree of accuracy that previously relied only on the fallible human memory.

As the accuracy of the technology continues to increase alongside deployments in more challenging and complex environments, its ability to support government initiatives and law enforcement means the debate about the lawful and appropriate use of facial recognition must be addressed. Facial recognition should not be everywhere looking for everyone, but when used properly it has the potential to improve public safety and we should make the most of its potential.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

Author profile

In case you missed it

Managing security during unprecedented times of home working
Managing security during unprecedented times of home working

Companies are following government guidance and getting as many people as possible working from home. Some companies will have resisted home working in the past, but I’m certain that the sceptics will find that people can be productive with the right tools no matter where they are. A temporary solution will become permanent. But getting it right means managing risk. Access is king In a typical office with an on-premise data centre, the IT department has complete control over network access, internal networks, data, and applications. The remote worker, on the other hand, is mobile. He or she can work from anywhere using a VPN. Until just recently this will have been from somewhere like a local coffee shop, possibly using a wireless network to access the company network and essential applications. CV-19 means that huge numbers of people are getting access to the same desktop and files, and collaborative communication toolsBut as we know, CV-19 means that huge numbers of people are getting access to the same desktop and files, applications and collaborative communication tools that they do on a regular basis from the office or on the train. Indeed, the new generation of video conferencing technologies come very close to providing an “almost there” feeling. Hackers lie in wait Hackers are waiting for a wrong move amongst the panic, and they will look for ways to compromise critical servers. Less than a month ago, we emerged from a period of chaos. For months hackers had been exploiting a vulnerability in VPN products from Pulse Secure, Fortinet, Palo Alto Networks, and Citrix. Patches were provided by vendors, and either companies applied the patch or withdrew remote access. As a result, the problem of attacks died back.  But as companies race to get people working from home, they must ensure special care is taken to ensure the patches are done before switching VPNs on. That’s because remote desktop protocol (RDP) has been for the most part of 2019, and continues to be, the most important attack vector for ransomware. Managing a ransomware attack on top of everything else would certainly give you sleepless nights. As companies race to get people working from home, they must ensure special care is taken to ensure the patches are done before switching VPNs on Hackers are waiting for a wrong move amongst the panic, and they will look for ways to compromise critical serversExposing new services makes them also susceptible to denial of service attacks. Such attacks create large volumes of fake traffic to saturate the available capacity of the internet connection. They can also be used to attack the intricacies of the VPN protocol. A flow as little as 1Mbps can perturbate the VPN service and knock it offline. CIOs, therefore, need to acknowledge that introducing or extending home working broadens the attack surface. So now more than ever it’s vital to adapt risk models. You can’t roll out new services with an emphasis on access and usability and not consider security. You simply won’t survive otherwise. Social engineering Aside from securing VPNs, what else should CIO and CTOs be doing to ensure security? The first thing to do is to look at employee behaviour, starting with passwords. It’s highly recommended that strong password hygiene or some form of multi-factor authentication (MFA) is imposed. Best practice would be to get all employees to reset their passwords as they connect remotely and force them to choose a new password that complies with strong password complexity guidelines.  As we know, people have a habit of reusing their passwords for one or more online services – services that might have fallen victim to a breach. Hackers will happily It’s highly recommended that strong password hygiene or some form of multi-factor authentication (MFA) is imposedleverage these breaches because it is such easy and rich pickings. Secondly, the inherent fear of the virus makes for perfect conditions for hackers. Sadly, a lot of phishing campaigns are already luring people in with the promise of important or breaking information on COVID-19. In the UK alone, coronavirus scams cost victims over £800,000 in February 2020. A staggering number that can only go up. That’s why CIOs need to remind everyone in the company of the risks of clickbait and comment spamming - the most popular and obvious bot techniques for infiltrating a network. Notorious hacking attempts And as any security specialist will tell you, some people have no ethics and will exploit the horrendous repercussions of CV-19. In January we saw just how unscrupulous hackers are when they started leveraging public fear of the virus to spread the notorious Emotet malware. Emotet, first detected in 2014, is a banking trojan that primarily spreads through ‘malspam’ and attempts to sneak into computers to steal sensitive and private information. In addition, in early February the Maze ransomware crippled more than 230 workstations of the New Jersey Medical Diagnostics Lab and when they refused to pay, the vicious attackers leaked 9.5GB or research data in an attempt to force negotiations. And in March, an elite hacking group tried to breach the World Health Organization (WHO). It was just one of the many attempts on WHO and healthcare organisations in general since the pandemic broke. We’ll see lots more opportunist attacks like this in the coming months.   More speed less haste In March, an elite hacking group tried to breach the World Health Organization (WHO). It was just one of the many attempts on WHOFinally, we also have bots to contend with. We’ve yet to see reports of fake news content generated by machines, but we know there’s a high probability it will happen. Spambots are already creating pharmaceutical spam campaigns thriving on the buying behaviour of people in times of fear from infection. Using comment spamming – where comments are tactically placed in the comments following an update or news story - the bots take advantage of the popularity of the Google search term ‘Coronavirus’ to increase the visibility and ranking of sites and products in search results. There is clearly much for CIOs to think about, but it is possible to secure a network by applying some well thought through tactics. I believe it comes down to having a ‘more speed, less haste’ approach to rolling out, scaling up and integrating technologies for home working, but above all, it should be mixed with an employee education programme. As in reality, great technology and a coherent security strategy will never work if it is undermined by the poor practices of employees.

How does audio enhance security system performance?
How does audio enhance security system performance?

Video is widely embraced as an essential element of physical security systems. However, surveillance footage is often recorded without sound, even though many cameras are capable of capturing audio as well as video. Beyond the capabilities of cameras, there is a range of other audio products on the market that can improve system performance and/or expand capabilities (e.g., gunshot detection.) We asked this week’s Expert Panel Roundtable: How does audio enhance the performance of security and/or video systems? 

How have standards changed the security market?
How have standards changed the security market?

A standard is a document that establishes uniform engineering or technical criteria, methods, processes, and/or practices. Standards surround every aspect of our business. For example, the physical security marketplace is impacted by industry standards, national and international standards, quality standards, building codes and even environmental standards, to name just a few. We asked this week’s Expert Panel Roundtable: How have standards changed the security market as we know it?