The majority of security hardware manufacturers support the introduction of the H.265 compression standard to video surveillance
The integration of H.265 technology may be hindered by the
availability of optimised H.264 best encoding for surveillance systems

Video compression technology has been a crucial element in surveillance system design since the advent of Internet Protocol (IP) in the 1990s. Since that time, standards for video encoding have been explored in various capacities. Currently, the industry is all abuzz around H.265 High Efficiency Video Coding – the next iteration beyond H.264, which currently dominates IP video encoding technology.

What is H.265?

H.265 is a significant step forward. Specifically, H.265 doubles the compression efficiency of H.264. Therefore, when transmitting images of a given quality, H.265 uses only half the bit rate of the previous codec. This means that both bandwidth and storage requirements are drastically reduced – a great benefit for both hardware and software usage. Users essentially do more with less. Because of this, the majority of security hardware manufacturers support the introduction of the H.265 compression standard to video surveillance. So, for video applications, expect to see H.265 replacing H.264 as the next standard.

However, that being said, H.265 is still a way away from mass adoption. With the popularity of HD video that has been widely applied across the industry, do users have any other option to optimise HD image transmission and squeeze storage before that turnover happens in the surveillance realm? Recent advancements in the current H.264 codec are optimising bitrates, and doing it in three ways: predictive encoding, noise suppression, and “long-term” bitrate control. The result is a reduction of up to 75% in storage requirements within the H.264 paradigm. Thanks to these innovations (and a couple of other factors), it looks likely that in the next five or 10 years, the two standards will co-exist in the market.    

Impediments to H.265 adoption

The integration of H.265 technology will likely be hindered by the availability of optimised H.264 encoding, as well as the cost of upgrading current systems to H.265 since all or most of the components in a system will need to be replaced by those that support this new standard. Other impediments include the industrial chain – changing manufacturing processes to produce H.265 equipment – and issues over patents (which we’ll address below). Basically, H.264 remains the viable and workable standard for a vast majority of security surveillance systems. It’s still getting the job done – and rather well, too.  

a number of innovative manufacturers have introduced optimised H.264 encoding technologies
With the higher cost, users will need to be convinced
that the upgrade to H.265 is really worth it

Limitations of laboratory testing

According to tests carried out by the Joint Collaborative Team on Video Coding (JCT-VC), the compression rate of H.265 has doubled from that of H.264. But as you’d expect, these tests were carried out in laboratory environments, away from the various complexities of real-world applications. What we’d like to see, in the development of H.265 products, is real-time encoding in action, balancing the algorithm’s complexity with its compression capability. As it exists right now, for industrial and surveillance applications, H.265’s compression capabilities may not reach the 100% improvement as claimed over H.264 in an actual application scenario.  

It stands to note that H.264 has had 10+ years of industry integration in which to develop, with support from all chipset manufacturers and the widest variety of encoders and decoders available (not to mention decreased costs because of this wide availability and range of product designs). It’s tested and proven in real-world surveillance and industrial applications. H.265 tech has a lot of catching up to do here.   

Higher patent cost

Another issue which may prevent widespread adoption of the H.265 standard is the issue of patents. The H.264 patent enjoys a wide variety of enterprise owners, while H.265, at this early stage of its existence, is not common in the industry, and the enterprises which own it are not unified on the matter. The result is a much higher patent cost – a major issue which security businesses need to consider seriously, as it affects manufacturing and, thereby, the price tag for the consumer. And the price tag, naturally, is critical when a new standard is introduced – especially if users have to replace both the frontend and backend of their system to take advantage of improved video compression. With a higher cost, they will need to be convinced that the upgrade is really worth it.

Optimised H.264 encoding technologies              

The issues mentioned above notwithstanding, the primary reason we feel H.265 won’t become the dominant encoding solution any time soon is simply the lack of demand – a number of innovative manufacturers have introduced optimised H.264 encoding technologies so the need hasn’t arrived yet. It’s a “solution in search of a problem,” as the saying goes.
 

Optimised H.264 technologies use predictive encoding to reduce the bitrate being spent on an unchanging background image
Optimised H.264 technologies use predictive encoding to reduce the bitrate being
spent on an unchanging background image

Since the launch of H.264 technology circa 2003, the security industry has been developing high performance video encoders in order to transmit higher quality video for surveillance applications. Add to that the increasing popularity of HD video and the subsequent bitrate and resolution demands, and it’s easy to see where the overall system and component cost has risen. The sheer amount of video data produced means users have had to invest in ever-expanding storage solutions.

Manufacturing capabilities have continually matured over this time; processing capabilities have flourished; algorithms have been optimised. The pervasive use of H.264 throughout the industry has both informed all of these developments and required major surveillance equipment manufacturers to commit to improving the range of available H.264 encoding solutions.

Predictive encoding

How are improvements to the H.264 codec being made? First, research in the way video compression is actually used at the ground level in various industries. For example, in any given surveillance video, users are primarily concerned with moving objects rather than the scene’s generally stagnant background. When the background doesn’t change, it can be encoded as a reference frame. Optimised H.264 technologies capitalise on this and use predictive encoding to reduce the bitrate being spent on an unchanging background image. By applying that predictive encoding across an entire system, users can reap big savings in both bandwidth and storage.   

Noise suppression  

Another important element of H.264 optimisation is its noise suppression. “Noise,” or unwanted electrical signal displaying in the video feed, is a potent foe of digital video bandwidth. It results in an image’s background appearing to be littered with extraneous pixels and is caused by fluctuations in light, temperature, or other various signals in the air. But optimised H.264 technologies, using intelligent analysis algorithms, suppress much of this noise by encoding the foreground subject of the image at a higher bitrate relative to the background image. The result: sharp images with accurate colour. Or, more of what you want to see, less of what you don’t.

It looks likely that in the next five or 10 years, the H.264 and H.265 standards will co-exist in the market
Improvements over basic H.264 encoding currently exceed
what the available H.265 encoding technology has to offer

Long-term bitrate control

Lastly, bitrate requirements for any given scene can fluctuate over the course of a day. In a typical street scene, for example, there is little foreground movement at night so bitrate requirements remain low. During the day, however, those bitrate requirements increase dramatically, with both vehicles and pedestrians moving across the fore- and background of the scene. Advanced H.264 encoding technologies manage this hour-specific variance by calculating an overall average bitrate, then automatically allocating the required bitrate at the time of day when it is needed. This is done while still maintaining the average bitrate as the encoder’s set value. Known as long-term bitrate control, the major of advantage here is that users are able to accurately predict their video storage requirements, since the bitrate – and thus storage size – can be user-specified.  

These improvements over basic H.264 encoding currently exceed what the available H.265 encoding technology has to offer. They also bring along other advantages: compatibility with existing systems, lower product costs, wider product variability, and lower current patent risk.   

The 10-year compression itch

Video compression developments have tended to follow a (roughly) 10-year cycle. In 1994, MPEG2 was introduced. H.264 launched in 2003 and H.265 in 2013. The historical context is important here because video encoding standards react not just to technological changes, but to trends across the whole video industry.

When MPEG2 was the standard, the industry focused mainly on DVD players and standard definition televisions, where MPEG2 could be utilised. The advent of H.264 coincided with the introduction of HD technology, advanced IT technology, and the mobile internet, which meant that the more powerful compression standard was more fully exploited. These developments included HD digital television, Internet video, mobile video, video surveillance, Blu-ray, and others.

As H.265 makes its way onto the scene, we believe it will be used most widely in the development of ultra-HD technologies and in cloud storage applications, for example.

Beyond H.265

After the launch of H.265, the members of the Joint Collaborative Team on Video Coding (JCT-VC) began looking at what would come next. In 2015, they established the Joint Video Exploring Team (JVET), focusing on further improvements in compression capabilities. Their latest test data suggests they have achieved a 20% improvement on H.265’s compression performance. At the same time, another organisation – the Alliance for Open Media (AOM) – was set up by a number of internet-focused companies, including Microsoft, Google, Intel, and Amazon, aiming to offer a free standard for internet video. The plan is that this standard would accelerate technology updates to meet the manic speeds of development in the online world.

The competition to develop these standards is likely to be fierce – and it might also mean the 10-year compression cycle falls by the wayside, with a new standard appearing in a much shorter period this time around.

Download PDF version Download PDF version

Author profile

In case you missed it

How soon will access control cards become extinct and why?
How soon will access control cards become extinct and why?

Since the advent of the physical security industry, access control has been synonymous with physical cards, whether 125 kHz ‘prox’ cards or the newer smart card alternatives. However, other credentials have also come on the scene, including biometrics and even smart phones. Some of these choices have distinct cost and security advantages over physical cards. We asked this week’s Expert Panel Roundtable: How soon will the access control card become extinct and why? 

Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach
Addressing the Internet Of Things (IoT) and challenges in device design using a comprehensive approach

As the number of connected devices increases worldwide, the ways that they are being used, designed, and tested have also expanded. The rise of connected devices is demanding engineers to harness the power of the internet of things, which is expected to hit 28 billion by 2025. A comprehensive approach to device design is needed more than ever to address the challenges that this rapid growth will bring. Why engineers should be using IoT technology in product design The demand for devices designed to use the Internet of Things (IoT) technology is increasing as more industries are finding expanded ways to put them into use. Industries such as healthcare, automobiles, and agriculture are becoming more dependent on cloud capabilities and are therefore in need of new devices able to connect to it. Due to this rise in demand, an increasing amount of devices are delivering a multitude of benefits both to consumers and companies. However, this new wave of products has led to a growing list of challenges for engineers as they are forced to address IoT tech in regards to connectivity, regulations, longevity, and security. Ways to use IoT in the development process Engineers are facing these new challenges along with the normal pressure of deadlines and test considerations. By approaching all of these issues from a comprehensive point-of-view, the solutions become clearer and new device capabilities can be born. Let’s look at the challenges individually as well as possible solutions for them. Improving connectivity IoT enables data to be transferred between infrastructure, the cloud, and devices, making the process smooth  Because IoT is based around connection, it’s no surprise that the primary challenge for engineers to overcome is the improvement of connectivity between devices. IoT enables data to be transferred between infrastructure, the cloud, and devices, so making this process as smooth as possible is crucial. The main challenges involved with connectivity have to do with development and product testing while meeting industry standards and best practices. Additionally, many companies lack the necessary equipment and technology to develop new IoT devices, which makes it difficult to create scalable prototypes and test new products. Suggested solutions To address the issue of not having the expertise and necessary tools for testing, we suggest outsourcing the prototyping and evaluation process instead of attempting to tackle this in-house. By doing this, you’re able to free up resources that would otherwise be needed for expensive equipment and qualified staff. Helping comply with regulations When working with devices that are connected across the world, there is a complex web of regulations and conformance standards that can lead to challenges for engineers. The necessity of complying with these regulations while also pushing to meet deadlines can be burdensome and lead to an increase in production time and expenses. Failure to comply with global and regional laws, as well as system and carrier requirements, can lead to fines and costly setbacks. This type of failure can destroy a company’s reputation on top of causing financial losses, often leading to the loss of business. Suggested solutions By testing the IoT device design and components early, engineers can address any pre-compliance issues that may arise. During the early stages of development, we suggest using scalable and automated test systems readily available in the marketplace. Improved communication with other devices New challenges arise as new devices hit the market and existing technologies are redesigned to offer a better experience In the rapidly growing number of connected devices, new challenges will arise as new devices hit the market and existing technologies are redesigned to offer a better user experience. This rapid growth in devices will lead to congested networks leading to the necessity of devices being able to function in the midst of increased traffic and interference. Failure to do this will lead to delayed responses which could prove to be fatal. Suggested solutions The best solution for this issue is found in the evaluation process and supporting test methods that the Institute of Electrical and Electronics Engineers (IEEE) published in the American National Standard for Evaluation of Wireless Coexistence (ANSI). This process addresses the interconnectivity issues present in radio frequency environments. The outlined process involves defining the environment and evaluating the wireless performance of the equipment through thorough testing. An in-depth version can be found in its entirety online. Increasing the longevity of devices IoT devices are being used in vital industries such as healthcare and automotive so battery life and power consumption are two challenges that engineers must take seriously. A failure in this area could potentially lead to loss of life or safety concerns on the road. As new firmware and software are being designed to address these factors, engineers must be implementing them into IoT devices with the ability to be continually updated. Suggested solutions Longevity should be addressed in all aspects of the design process and tested thoroughly using a wide range of currents. By doing this, an engineer can simulate consumer applications to best predict performance. Security Security and privacy are concerns with any technology, but with the use of IoT in medical devices, it’s paramount Security has been a controversial issue for IoT since its inception. Security and privacy are concerns with any technology, but with the widespread use of IoT in medical devices, smart home appliances, and access control and surveillance, it’s paramount. For example, medical devices may store information about health parameters, medications, and prescriber information. In some cases, these devices may be controlled by an app, such as a smart pacemaker, to prevent heart arrhythmias. Naturally, a security issue in these devices could be devastating. Another example of dangerous security concern is with surveillance cameras and access control, such as for home or business security systems. These intelligent door locking systems contain locks, lock access controllers, and associated devices that communicate with each other. Suspicious activities are flagged with alerts and notifications, but if a hacker gains access, it can lead to real-world, physical danger. Security design points Here are some key points for security design: Physical security: IoT devices may be in external, isolated locations that are vulnerable to attack from not only hackers but by human contact. Embedding security protection on every IoT device is expensive, but it’s important for general security and data safety. Security of data exchange: Data protection is also important because data gets transmitted from IoT devices to the gateway, then onto the cloud. With surveillance and access control information or sensitive medical information, and encryption is vital to protecting data from a breach. Cloud storage security: Similar to data exchange, the information stored in medical devices, surveillance and access control systems, and some smart appliances with payment features, must be protected. This includes encryption and device authentication through access control, which can police what resources can be accessed and used. Update: Security vulnerabilities will always occur, so the key to addressing them is having a plan to address errors and release patches. Customers should also have options to secure devices quickly and effectively. Suggested solutions Engineers can include security and protection into IoT devices with early and perpetual testing throughout the design process. Most security breaches occur at endpoints or during updates, giving engineers a starting point for how to address them. Creating more secure devices Ensuring the security of connected devices should be of supreme importance for engineers as these devices are vulnerable to security breaches. The ultimate security of devices goes beyond the scope of engineering as the network and enterprise levels must also be secure to protect against potential threats. However, engineers play a role in this protection as well and should consider device security in the design process. Suggested solutions On a device level, engineers can help protect IoT devices from vulnerabilities by implementing early testing and continuing it throughout the design process. Most security transgressions occur at endpoints so this continual testing can, and should, create barriers to breaches. Regulations and compliance For IoT engineers, the complex web of regulations and compliance standards present new challenges Regulations and compliance surrounding data and technology are nothing new, but for IoT engineers, the complex web of regulations and compliance standards present new challenges. Engineers are already addressing obstacles in security and connectivity, all while meeting deadlines, and working around regulations adds time and expense to the process. Unfortunately, a failure to comply with global, regional, or local laws can lead to setbacks and fines. In addition to time lost in production and possible fines, the damage to a company’s reputation can lead to even more losses. Suggested solutions Compliance should be considered early and often in the design process. In the early stages of development, the IoT device or components can be tested to address and compliance issues. If possible, use a scalable and automated test system. The comprehensive solution As we stare at an uncertain future full of possibilities, it’s clear to see that new challenges will continue to be presented as technology evolves and new innovative devices are designed by engineers. By addressing these issues early and often, solutions can be implemented and problems prevented before they even have a chance to occur thanks to sound engineering and solid design.

Everbridge provides the critical event management platform to help organisations manage the full lifecycle of a crisis
Everbridge provides the critical event management platform to help organisations manage the full lifecycle of a crisis

The UK Government is consulting on plans to introduce a new law requiring operators of public spaces to consider the risk of a terrorist attack and take proportionate and reasonable measures to prepare for and protect the public from such an attack. Under the proposals outlined in the consultation document, those responsible for a publicly accessible location will have a ‘protect duty.’ The protect duty would apply to certain publicly accessible locations, widely defined as ‘any place to which the public or any section of the public has access, on payment or otherwise, as of right or by virtue of express or implied permission.’ Publicly accessible locations Publicly accessible locations include a wide variety of everyday locations such as: Sports stadiums, festivals and music venues, hotels, public houses, clubs, bars, casinos, high streets, retail stores, shopping centres, markets, schools, universities, medical centres, hospitals, places of worship, government offices, job centres, transport hubs, parks, beaches, public squares, other open spaces. This list is by no means exhaustive, but it does demonstrate the diverse nature of publicly accessible locations. To manage these challenges, some organisations are relying on guarding and manual solutions or processes Organisations responsible for publicly accessible locations have many challenges they need to overcome while at the same time ensuring that safety and security is visible, yet non-intrusive. To manage these challenges, some organisations are relying on guarding and manual solutions or processes, whereas other organisations have invested heavily in diverse security technologies: CCTV, access control, intruder alarms, fire detection, intercoms and more. Managing public safety Effectively managing public safety and security is difficult and can be costly. Potential liabilities are something to seriously consider, based on forthcoming regulation and prevailing public expectations. When a critical event unfolds public reactions can be difficult to safely manage, however this is now a must do. Public space operators need to get the right information to the right people at the right time to protect all people, including every single member of the public. Their work with public and private sector clients around the world has enabled them to understand ‘protecting the public’ challenges and offer solutions that meet the specific requirements. Public space operators and organisations must keep track of all emerging threats and assess the potential impacts of when, not if, they will experience a critical event. Unpredictable threat environment Security executives have the challenge of protecting people, facilities and assets With an increasingly complex and unpredictable threat environment, it has never been more imperative to act faster. With more complete intelligence, organisations can increase their speed and decisiveness to assess risks and prevent those risks from harming people or disrupting operations. Leisure and entertainment is a prominent UK industry, that is also one of the most vulnerable to safety and security threats. Security executives have the challenge of protecting people, facilities and assets, while also maintaining friendly and welcoming services to visitors. Public venues and retailers must provide non-intrusive client safety and security. For the would-be criminal, safety and security provision should be a visible deterrent. Balancing these needs is where Everbridge can help organisations. Everbridge provides the critical event management platform to help organisations manage the full lifecycle of a crisis. Facilitating device activation Their platform correlates events from disparate safety and security systems into a common operating picture to focus people’s attention on what really matters. The platform provides users with actionable alerts, next step actions, and automated reporting to better manage risks, ensure compliance with operating procedures and support the business continuity. Automated workflows ensure rapid, consistent responses, reducing the risk of human error Automated workflows ensure rapid, consistent responses, reducing the risk of human error. It also facilitates device activation to ensure they are always in operational control and protecting the people. Dynamic reports and dashboards provide real-time actionable insights for the operations teams and senior executives. Benefits include: Real-time situational awareness. Reduces risk. Accelerates response times. Avoids technology lock-ins. Prevents information overload. Keeps stakeholders informed. With Everbridge, the organisation can deliver the public protect duty. Now and in the future.