The use of drones has increased dramatically in the last few years. Indeed, by 2021, the FAA says the number of small hobbyist drones in the U.S. will triple to about 3.55 million. With that growth, drone capabilities have increased while costs have decreased. For example, the DJI Phantom 4 can deliver a 2-pound payload to a target with 1.5m accuracy from 20 miles away for the less than $1000.00. This is an unprecedented capability accessible to anyone. This new technology has created an entirely new security risk for businesses and governments.

Drone security risks

Already, rogue groups such as ISIS have used low cost drones to carry explosives in targeted attacks. Using this same method, targeting high profile locations within our borders to create terror and panic is very possible.

Security professionals and technologists are working furiously to address the gaps in drone defence. Currently, the most common technologies in use for drone detection are video, acoustic sensors, radio, and air surveillance radar. Each of these has advantages, but they also have flaws that make it difficult to detect drones in all conditions. Both optical and thermal cameras, as well as acoustic sensors, do not operate in severe weather such as fog and snow. And while radio and air surveillance radar cover a wide area of detection, they suffer from high installation costs and limiting technical challenges, such as being unable to detect low flying drones on autopilot.

Compact Surveillance Radar (CSR) Compact Surveillance Radar (CSR) is a security technology addressing the problems with other types of detection. CSR, like traditional radar, has the benefit of being able to detect and track foreign objects in all weather conditions, but at a fraction of the size and cost. The compact size allows the radar to be mounted on existing structures or even trees, providing extensive perimeter defence almost anywhere that you can imagine. CSR can also filter out clutter such as birds by using an advanced algorithm reducing the number of false alarms. While the use of CSR and the other detection technologies are legal in the US and in most locations throughout the world, the response mechanisms are generally not.

Current regulations in the US prohibit the use of jamming or GPS spoofing in all cases except for a few federal agencies

Regulations limiting drones

Current regulations in the US prohibit the use of jamming or GPS spoofing in all cases except for a few federal agencies. This makes it difficult to stop the damage that drones can cause. The FAA has put into place new regulations that limit some uses of drones. However, in most cases it is still illegal for even state or local governments to stop or interfere with drones other than to locate the operator and have them land the drone.

In 2016 the first law to neutralise a drone in the United States was passed in Utah to respond to drones in wildfire areas because of their interference with airborne firefighting. This law may very well provide a model for other states dealing with drones in situations where people’s lives are being put at risk by drones. At the federal level, much effort is being put into evaluating the regulations and technology surrounding the misuse of drones. In the 2016 reauthorisation bill for the FAA, Section 2135 included a pilot program for the investigation of methods to mitigate the threat of unmanned aircraft around airports and other critical infrastructure. There are many federal agencies that are evaluating the use of a variety of technologies to respond to this threat.

Security professionals and technologists are working furiously to address the gaps in drone defence
Both optical and thermal cameras, as well as acoustic sensors, do not operate in severe weather such as fog and snow

 

Effective countermeasure technologies

The most effective countermeasure for drones is jamming, currently off-limits to the private sector. This includes stadiums, convention centres, and other large gathering areas. A number of companies are developing new response technologies that do not require the use of jammers or hacking. Several companies have developed net guns that shoot a net at an approaching drone. These are only effective at less than 100m and frequently miss the target, especially when the drone is approaching at high speed.

Several other companies have taken this method a step further, with drones that capture other drones. Once a radar detects a drone, another defence drone is launched and flies to the point of detection. Then, using video analytics it homes in on the drone and fires a net to disable the drone and take it to a safe location. While this drone capturing technique is still in its infancy, it shows a great deal of promise and will not be restricted in the same fashion as jamming. However, even this solution is difficult under current regulations, as all commercial drones in the US must be under direct control of a human operator within their line of sight. This effectively means that a drone operator is required to be on-site at all times to protect a facility, event, or persons.

One thing is for certain, technology will continue to adapt and security companies will continue to invent new methods to protect their facilities and the people they are sworn to protect.

Download PDF version Download PDF version

Author profile

In case you missed it

The EU called for a ban on police use of facial recognition but not commercial use. Why?
The EU called for a ban on police use of facial recognition but not commercial use. Why?

Recently, the European Parliament called for a ban on police use of facial recognition. In the US, too, some cities have restricted police use of facial recognition. The first question that comes to mind is - why ban police from using technology that is allowed to private companies? Point of difference The key difference between the way police use facial recognition and the way commercial facial recognition products work is that: The police get a picture of a suspect from a crime scene and want to find out: "Who is the person in the picture?" That requires as wide a database as possible. Optimally - photos and identities of all the people in the world. Commercial facial recognition products such as those used by supermarkets, football stadiums, or casinos answer different questions: "Is the person in the picture on the employees' list? Is the person in the picture on a watch-list of known shoplifters?" To answer these questions doesn't require a broad database but rather a defined list of employees or a watch-list of specific people against whom there is an arrest warrant or a restraining order. Use of facial recognition AnyVision helps organisations leverage facial recognition ethically to identify known persons of interest "Facial Recognition Apps Should Be Provided to the Police with an Empty Database". This is exactly the subject of the open letter sent by AnyVision, to the British Biometrics and Surveillance Camera Commissioner, Prof. Fraser Sampson, titled: "Facial Recognition Apps Should Be Provided to the Police with an Empty Database". AnyVision recently raised $235M from Softbank and another leading VCs is a visual AI platform company that helps organisations across the globe leverage facial recognition ethically to identify known persons of interest, including shoplifters, felons, and security threats. Ethical use of facial recognition AnyVision CEO Avi Golan wrote, "The ethical use of facial recognition is a thorny one and requires a nuanced discussion. Part of that discussion has to explain how facial recognition works, but, just as important, the discussion must also involve how the technology is used by police departments and what checks and balances are built into their processes.” “We recommend building their watchlists from the ground up based on known felons, persons of interest, and missing persons. Some facial recognition solution providers have scrapped billions of photos and identities of people from social networks, usually without their consent." "Unfortunately, this method of facial recognition has justifiably angered privacy groups and data protection agencies around the globe and damaged the public trust in accuracy and reliability of facial recognition systems.” Preventing invasion of citizen’s privacy We believe an unjustified invasion of citizens' privacy can be prevented, false arrests can be reduced" “We believe that lists of suspects should be limited and justified. In this way, unjustified invasion of citizens' privacy can be prevented, false arrests can be reduced and public confidence in technology can be increased.” Golan added: "AnyVision is willing to share its industry insights and best practices from our vast research experience with leading global players, including name-brand retailers, global hospitality and entertainment companies, and law enforcement agencies from around the world.” Balancing public order and crime prevention “If the regulations set forth by Surveillance Camera Code of Practice are committed to the principles outlined above, then law enforcement agencies can strike the right balance between the need to maintain public order and prevent crime with the rights of every person to privacy and non-discrimination before the law." Recently Clearview AI CEO told Wired; the company has scraped 10 billion photos from the web - 3 times more than was previously known.

Dahua Technology shows how intelligent cameras enhance safety in nursing homes
Dahua Technology shows how intelligent cameras enhance safety in nursing homes

Patient falls in nursing homes are a serious problem. In the United States, for example, around 1,800 elderly people, living in nursing facilities, die each year from injuries related to falls, according to the Nursing Home Abuse Center. Those patients who survive their injuries often have a reduced quality of life and suffer some form of permanent disability. Rise in nursing home patient falls Figures show that between 50% and 75% of nursing home residents suffer falls each year, twice the chances of falling when compared to seniors who live in a regular residential community. It has been a prevalent challenge to detect falls quickly and effectively, especially when these occur in residents’ bedrooms. In the United Kingdom, the Care Quality Commission has recognised that the use of CCTV may be one of the best ways to ensure safety and quality of care. However, using video surveillance also brings into question other security issues, such as privacy and data protection. Dahua’s WizMind technologies WizMind embraces human-based AI (Artificial Intelligence), for a whole host of applications across verticals This is where Dahua Technology’s WizMind technologies come into play. WizMind embraces human-based AI (Artificial Intelligence), for a whole host of applications across verticals, such as retail, energy, finance, transportation and of course, health and social care. Specific to the health and social care sector are deep-learning algorithms, to protect the privacy of the face and body in real-time, and stereo analysis, which combines dual-lens cameras with three-dimensional scene analysis, in order to detect sudden physical movement, such as falls. Stereo video analysis The growth of AI applications has enabled the greater availability of 3D scene analysis solutions, thereby enabling objects and people to be analysed in three dimensions. Dahua Technology’s stereo analysis uses two lenses, in order to capture separate images of the same scene. It then computes the ‘optical parallax’ of spatial points in the two images, providing 3D information of the scene. The stereo vision mimics the depth of view that comes from humans having two eyes, known as binocular vision. Combined with deep-learning algorithm Combined with a deep-learning algorithm, stereo analysis can recognise event patterns, such as falls and other movement-based behaviours, such as people approaching, the detection of an abnormal number of people in an area, and violent behaviour. In nursing and care homes, stereo analysis cameras can help staff monitor residents, in case of emergency and respond to residents’ problems, such as tripping and falls. The cameras can view all three dimensions of subjects and together with its deep-learning algorithm, can immediately alert staff to any unusual or sudden movement, such as would be evident in a fall. Cameras in communal areas and bedrooms With cameras situated both in communal areas and in bedrooms, the staff is able to respond quickly to incidents With cameras situated both in communal areas and in bedrooms, the staff is able to respond quickly to incidents, which may otherwise stay undiscovered for hours. An example of such a scenario is a nursing home in Singapore, which has a capacity of around 400 beds and is divided into 14 separate living environments, with each designed to be a home-like living area. Dahua cameras with intelligent fall detection technology Dahua cameras, such as IPC-HDW8341X-BV-3D with intelligent fall detection technology were installed, including the provision of 167 stereo analysis cameras inside each bedroom. These trigger an alarm, in the case of incidents, such as a fall, allowing immediate response by staff. Not only does this enhance the well-being and safety of residents, but it also can reduce the nursing home’s labour costs. In addition, Stereo Analysis can also be applied in other application scenarios. An underground unmanned bicycle parking garage in Amsterdam, for instance, has installed Dahua Technology’s behaviour analysis cameras, to detect abnormal events and prevent accidents, such as people tripping and falling, or suspicious individuals wandering around the area. Privacy Protection 2.0 technology While monitoring their situation inside the nursing home, Dahua also adopts Privacy Protection 2.0 technology that features masking of human face and body, to protect the residents’ privacy. It involves the restriction of what can be seen in video images and applies equally to live, and recorded images. Digital masking takes place on the front-end device (e.g. network camera). Dahua’s Privacy Protection 2.0 provides real-time occlusion of the body and face and enables users to access recorded videos, without having to overlay faces with mosaic masks. It also offers additional occlusion options, such as irregular polygons, mosaics and coloured blocks, and allows code exporting based on specified targets, ensuring the privacy of subjects. Privacy and security in evidence collection Stereo video analysis and privacy protection come into their own in nursing homes and healthcare facilities Benefits offered include non-pixelated human targets, allowing for privacy and security in evidence collection. The technology also allows for face and human attributes analysis, without breaching people’s privacy, making it ideal for nursing homes. Stereo video analysis and privacy protection come into their own in nursing homes and healthcare facilities. It allows the close monitoring of residents or patients to help ensure their well-being and safety, while at the same time protecting the privacy of often vulnerable individuals. Dahua TechMonth As part of the Dahua TechMonth, this blog highlights how Dahua’s stereo analysis technology, combined with privacy protection, can provide a valuable tool to help staff respond to incidents quickly and efficiently, including falls, without infringing on people’s data protection rights. In the next blog, Dahua Technology will be discussing the WizMind application of human metadata, enabling users to maximise situational awareness and analysis of events. 

Eagle Eye’s Uncanny Vision deal highlights value of combining AI and cloud
Eagle Eye’s Uncanny Vision deal highlights value of combining AI and cloud

The trend of video customers moving to the cloud has reached a tipping point. At the same time, artificial intelligence (AI) is being adopted on a massive scale. Combining the two trends adds a higher level of value than either component individually. Merging the power of AI and the cloud is a driving force behind cloud surveillance company Eagle Eye Networks’ acquisition of Uncanny Vision, an AI and video analytics company headquartered in Bangalore, India. Expensive AI resources Cloud systems empower customers to leverage AI without having to install and program complicated and expensive hardware, in effect stripping away the barriers to entry that customers face when seeking to embrace AI. The cloud also enables customers to share expensive AI resources. One of the key components is ease of deployment – click, click and turn on the AI for any camera" Simplicity of implementation is crucial to the combined value proposition of Eagle Eye Networks and Uncanny Vision. “One of the key components is ease of deployment – click, click and turn on the AI for any camera (in a cloud system),” says Dean Drako, Eagle Eye Networks CEO. There is also a benefit of having AI systems networked, enabling 25 banks to perform facial recognition of customers from a single cloud-based system, he adds. A transition is also under way in the perception of AI. Video surveillance applications While previously it was seen as an add-on to surveillance systems, now it is seen as a very desirable feature on any system. “Centralised management of the cloud benefits the AI database,” says Drako. “In a project built around licence plate recognition (LPR), for example, all the data goes up to the cloud into a single database, and the customer can get a mobile view of everything going on across the world. You can’t do that without the cloud. And AI for LPR is more accurate.” Uncanny Vision’s targeted focus on AI for video surveillance applications was one factor that attracted Eagle Eye Networks to make the acquisition, says Drako. In contrast, some other companies have embraced broader applications of video AI. Uncanny Vision also has more customers using their system in real-world applications than competitors. Finally, the acquisition will help to expand Eagle Eye Networks’ presence in the LPR market, where Uncanny Vision is especially strong. Improving business operations The 60 employees at Uncanny Vision are mostly engineers and programmers Uncanny Vision’s deep learning algorithms enable recognition, identification, and prediction, improving business operations, customer service, and site safety. Applications include smart parking, retail, smart cities, ATM monitoring, worker safety and perimeter security. The 60 employees at Uncanny Vision are mostly engineers and programmers. “These guys understand how to translate AI algorithms to run very efficiently on various types of hardware,” says Drako. “They optimise how they get the code to run so we can implement in the cloud cost-effectively. They do it at a modest cost to make it more accessible. They understand how to deploy software for high performance on low-cost hardware.” For Uncanny Vision, the new ownership provides more reach. “We have a huge channel and a huge brand,” says Drako. “They are strong technical guys who need a sales and solution channel.” Video analytics solutions Even in light of the acquisition, Eagle Eye Networks will continue to provide a selection of third-party AI and video analytics solutions to customers. Use of AI and video analytics is specific to the application and business needs of each customer. Use of AI and video analytics is specific to the application and business needs of each customer In addition to AI functionality, systems need a ‘business logic’ component that drives how that capability is integrated into a system. System needs vary widely by vertical market, and many third-party vendors are focused on a specific vertical and how AI can benefit that market. Recurring monthly revenue “Third parties can provide analytics and the business logic, which is different for a factory, an office building or for a drive-thru restaurant,” says Drako. “The market is looking for many solutions, and one company couldn’t own a majority of them.” To ensure flexibility, Eagle Eye Networks will accommodate third party solutions, deploy their own analytics, or leverage analytics embedded in cameras. For Eagle Eye Networks’ dealer and integrator customers, the expansion into AI presents a new opportunity for recurring monthly revenue (RMR) and provides greater value to customers. Drako says the impact of the acquisition will be global as AI applications grow in popularity worldwide.