In the wake of 9/11, the Federal Government’s secure-the-fort, big idea was to create an identity credential for all federal employees and contractors. Homeland Security Presidential Directive (HSPD)-12 set it all in motion. Today, we know the smartcard-based credential that arose from HSPD-12 as the Personal Identity Verification (PIV) card.

The PIV card is meant to give employees/contractors physical access to federal facilities and logical access to federal information systems. While using a PIV card for logical access has been largely successful and compliant with HSPD-12, implementing PIV-based, physical access control systems (PACS) has been much more difficult to conquer. As a result, HSPD-12 compliance for PACS has largely eluded the Federal Government. The noncompliance reasons are many, but there is now hope for fully achieving HSPD-12’s mandates.

Interoperability with any agency’s PIV

Beyond Passports, PIV cards represent the only other open-standards-based, multi-vendor-supported, identity credential program on the planetAll Executive Branch employees and long-term contractors, including the entire Department of Defense, have been issued PIV cards. This has been true since 2013. Beyond Passports, PIV cards represent the only other open-standards-based, multi-vendor-supported, identity credential program on the planet.

It seems so simple, where employees/contractors previously used their proximity card to open a federal facility door or go through a turnstile, they should now be able to use their PIV card. However, HSPD-12 took the PIV requirement one step further – compliant PACS must be interoperable with any agency’s PIV. This introduced an entire magnitude of additional complexity.

A compliant, interoperable, PIV-based PACS should work like this: an authorised employee (or contractor) presents a PIV card (contact or contactless) to a card reader to enter whichever federal agency building they have reason to be. Over the last 14 years, in all but a very few cases, the lack of PACS’ HSPD-12 compliance has prevented this from happening.

Secure credential policy

Today, less than 1% of the Federal Government’s PACS are HSPD-12-compliant. At most federal facilities, especially those outside the National Capitol Region, a noncompliant PACS works like this: an authorised employee (or contractor) presents a proximity (‘prox’) badge to a proximity card reader to enter his or her agency’s facility. At the fraction of federal facilities with upgraded PACS that work with PIV cards, virtually all such PACS fail to properly use a minimum number of PIV security features before granting access – let alone interoperate with a PIV card from any other agency.

Active government solicitations are issued for new, non-compliant, proximity-based systems that perpetuate the delay to HSPD-12 complianceNew federal initiatives frequently suffer from having no policy to enforce their roll-out. That isn’t the case with PACS compliance. Policies have been in place for so long that newer policies like Office of Management and Budget (OMB) M-11-11 (February 3, 2011) remind everyone what the policies said in 2004 and 2006. This year, OMB publicised its proposed OMB M-18-XX (Draft), which will replace M-11-11. OMB M-18-XX’s (Draft) main PACS thrust is, once again, to ensure that everyone understands what the Federal Government’s secure credential policy is. It hasn’t changed since 2004.

It would be tempting to say that PACS technology isn’t mature, but that isn’t the case. In 2013, the Federal Government revamped the PACS portion of the FIPS 201 Evaluation Program and, since that time, all PACS on the General Services Administration’s (GSA) Approved Products List are 100% compliant and interoperable. Yet, on any given day, active government solicitations are issued for new, non-compliant, proximity-based systems that perpetuate the delay to HSPD-12 compliance.

The usual suspects, policy and technology, are not the culprits for this epic delay.

An authorised employee presents a proximity badge to a proximity card reader to enter his or her agency’s facility
An authorised employee presents a PIV card to a card reader to enter whichever federal agency building they have reason to be

Difficulties in adopting HPSP-12 compliance for PACS

  • Standards – The Federal Government’s approach to standards is to avoid a great deal of specificity. It’s an unspoken tenet that federal standards must be flexible, promote innovation and avoid disadvantaging any participating market segment. The opposite is true if your goal is interoperability: nearly every detail must be specified. Consider the standards-based success story of chip-based credit cards. When was the last time you used a credit card and it didn’t work? Interoperability failures are nearly unheard of. If you look at the hundreds of volumes of technical specifications that cover minute aspects of every component in credit cards and payment terminals, you quickly realise why it works so well. Nothing is left to chance, nothing is a variable, and there is no optionality.

The Good News: Work to increase viability through deep scrutiny has progressed in recent years. The GSA APL PACS Testing Lab, set up in 2013, annually tests credentials from all PIV issuers against all GSA-approved PACS. This testing has significantly reduced interoperability failures at federal facilities.

  • Collaboration – In the past, physical access practitioners from federal agencies rarely collaborated, unlike their logical access counterparts. This is also true for PACS procurement decision-makers across agencies and facilities.

The Good News: In 2018, an agency trend has emerged where finally physical access, physical security and IT practitioners have begun sitting down to discuss their shared responsibilities. We have already begun to see coordinated budget requests between IT and Security with enterprise architectures positioning PACS as an enterprise service on the network.

  • Scale – The Federal Government owns so many buildings that they can’t be counted. Google doesn’t know how many there are and neither does any one government official.
  • Variability – A significant percentage of facilities have unique aspects making a one-size-fits-all approach infeasible.

The Good News: Mature consulting services can now help agencies marry federal requirements with their unique environments to develop robust PACS enterprise architectures. As we see this occurring more and more frequently, a repeatable, achievable, systems-based upgrade of all PACS may be on the horizon.

Active government solicitations are issued for new, non-compliant, proximity-based systems that perpetuate the delay to HSPD-12 compliance
The GSA APL PACS Testing Lab annually tests credentials from all PIV issuers against all GSA-approved PACS
  • Provenance – In many cases, different groups own different parts of a single facility, not all of whom might be subject to, or wish to interoperate with, a high-assurance compliant PACS. For example, GSA manages facilities for Legislative and Judicial tenants who aren’t subject to HSPD-12. Policy dictates that GSA manage the PACS for the front doors of these facilities should be HSPD-12-compliant, despite the fact that these tenants likely don’t have credentials that work with this technology. Sure, these tenants could commercially obtain a PIV-I credential, but almost none have.
  • Economics – It’s difficult for agencies to create their annual security budget requests when HPSD-12 PACS upgrades are in scope, because so many unknowns exist at each facility. To assess the cost, the time to complete, and the facility’s existing equipment inventory, it would be logical for an agency to hire a contractor with PACS expertise to perform a site assessment. Having to do capital planning for an assessment phase in advance of making the annual budget request for the PACS upgrade creates a never-ending cycle of delay. Especially at agencies with multi-year capital planning requirements. Many agencies, trying to avoid this delay cycle, have fallen prey to doing site assessments themselves. This results in their integrators doing their walk-throughs after the contract is awarded. This is the leading cause of PACS upgrade cost overruns.
  • Dependence on the agency’s IT department – Historically, PACS have been deployed on dedicated networks and are rarely ever connected to the enterprise, let alone the Internet. High-assurance PACS that validate credentials from other agencies must now communicate with many different systems on an enterprise network and over the Internet – so much so that the Federal Government reclassified PACS as IT systems.

The Good News: With collaboration increasing between Physical Security Officers (PSOs) and Chief Information Officer (CIOs), we expect this to improve in due course.

  • Resistance to change – This is a classic human factors challenge, and it’s a big one. PSOs have spent decades achieving their positions. PIV-based PACS could not be more different from the technologies that proceeded it, and such radical change is often resisted. When the value proposition is clear, change is adopted more readily. But security value isn’t easily measured or observed. It is often said that the best performance review for a PSO is to note that nothing happened. And when something does happen, it is necessarily kept quiet so the risk can be remediated without calling attention to the vulnerability in the interim. To date, the value proposition of moving to PIV-based PACS has been entirely based on policy (without corresponding funding in most cases) and through the shock value of white hat hackers, showing how easily most proximity badges can be cloned. This is not the stuff of change agents.

 

PACS have been deployed on dedicated networks and are rarely ever connected to the enterprise
PIV-based PACS could not be more different from the technologies that proceeded it, and such radical change is often resisted

Are these challenges a unique situation?

No, these PACS challenges are not unique. Cybersecurity initially faced many of the same challenges that federal PACS face today. By 2000, the Federal Government recognised its urgent need to improve cybersecurity practices across its computing infrastructure and issued many policies that required agencies to improve. Improvement was sparse and inconsistent. GSA Schedules were set up to help agencies buy approved products and services to assist them, but this too produced lacklustre results.

The Federal Government found that the best cybersecurity results occurred when enforced at the time an agency commissioned a system

Congress enacted the Federal Information Security Management Act of 2002 (FISMA) (now amended by the Federal Information Security Modernization Action of 2014). FISMA mandates an Authority To Operate (ATO) accreditation process for all information systems. The Federal Government found that the best cybersecurity results occurred when enforced at the time an agency commissioned (vs. purchased) a system.

FISMA and ATO accreditation has been highly successful when implementing new systems. These cybersecurity requirements are the closest thing that the Federal Government has to the ‘PIV Police’ today. However, the PIV requirements in FISMA and ATOs currently apply to only logical access for information systems.

The proposed OMB M-18-XX (Draft) mentions that a FISMA PACS overlay to NIST SP 800-53 is forthcoming. The intent of the PACS overlay is to use the army of ATO accrediting officials in the Federal Government and enable them to assess implemented PACS as fit for purpose. This is the first time an enforcement approach has been brought forward that could reasonably succeed.

How long for HSPD-12 compliance?

We know that it won’t take another 14 years to achieve HSPD-12 compliance. Pockets of compliance are popping up. Compliant procurements do exist, and the state of PACS across the Federal Government is better in 2018 than in any previous year. Progress to date has been at a constant rate. The question is: what would take for progress to occur at an exponential rate instead? A major attack or compromise involving PACS would certainly hasten upgrades, but let’s hope that’s not the solution.

The energy distribution sector has been riding a wave of security upgrade demands to retrofit their facilities across the U.S.

The energy distribution sector, under nearly constant Advanced Persistent Threat attacks, has been riding a wave of security upgrade demands to retrofit their facilities across the U.S. The potential threat exists for Federal Government facilities as well.

Looking into the federal PACS-compliance crystal ball, we’re beginning to see the faint outline of a multi-faceted campaign of education, budgetary oversight and accreditation of PACS that will ultimately see us past the tipping point. Consider though, at the current rate of PACS enablement, a 50% compliance rate is still far in the future.

When that day arrives, the PIV card form factor may no longer be the key that fits that future lock. (Are you already using a mobile device’s Bluetooth interface to open the door to your office building?) Taking decades to perform a technology upgrade is the aging elephant in the room no one talks about. By the time critical mass is achieved with an upgrade facing these many challenges, there are typically compelling reasons to start over again with the next generation of technology. That cycle may well prove to be the Federal Government’s biggest PACS challenge of all.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

Author profile

Jeff Nigriny President and Founder, CertiPath

In case you missed it

Managing security during unprecedented times of home working
Managing security during unprecedented times of home working

Companies are following government guidance and getting as many people as possible working from home. Some companies will have resisted home working in the past, but I’m certain that the sceptics will find that people can be productive with the right tools no matter where they are. A temporary solution will become permanent. But getting it right means managing risk. Access is king In a typical office with an on-premise data centre, the IT department has complete control over network access, internal networks, data, and applications. The remote worker, on the other hand, is mobile. He or she can work from anywhere using a VPN. Until just recently this will have been from somewhere like a local coffee shop, possibly using a wireless network to access the company network and essential applications. CV-19 means that huge numbers of people are getting access to the same desktop and files, and collaborative communication toolsBut as we know, CV-19 means that huge numbers of people are getting access to the same desktop and files, applications and collaborative communication tools that they do on a regular basis from the office or on the train. Indeed, the new generation of video conferencing technologies come very close to providing an “almost there” feeling. Hackers lie in wait Hackers are waiting for a wrong move amongst the panic, and they will look for ways to compromise critical servers. Less than a month ago, we emerged from a period of chaos. For months hackers had been exploiting a vulnerability in VPN products from Pulse Secure, Fortinet, Palo Alto Networks, and Citrix. Patches were provided by vendors, and either companies applied the patch or withdrew remote access. As a result, the problem of attacks died back.  But as companies race to get people working from home, they must ensure special care is taken to ensure the patches are done before switching VPNs on. That’s because remote desktop protocol (RDP) has been for the most part of 2019, and continues to be, the most important attack vector for ransomware. Managing a ransomware attack on top of everything else would certainly give you sleepless nights. As companies race to get people working from home, they must ensure special care is taken to ensure the patches are done before switching VPNs on Hackers are waiting for a wrong move amongst the panic, and they will look for ways to compromise critical serversExposing new services makes them also susceptible to denial of service attacks. Such attacks create large volumes of fake traffic to saturate the available capacity of the internet connection. They can also be used to attack the intricacies of the VPN protocol. A flow as little as 1Mbps can perturbate the VPN service and knock it offline. CIOs, therefore, need to acknowledge that introducing or extending home working broadens the attack surface. So now more than ever it’s vital to adapt risk models. You can’t roll out new services with an emphasis on access and usability and not consider security. You simply won’t survive otherwise. Social engineering Aside from securing VPNs, what else should CIO and CTOs be doing to ensure security? The first thing to do is to look at employee behaviour, starting with passwords. It’s highly recommended that strong password hygiene or some form of multi-factor authentication (MFA) is imposed. Best practice would be to get all employees to reset their passwords as they connect remotely and force them to choose a new password that complies with strong password complexity guidelines.  As we know, people have a habit of reusing their passwords for one or more online services – services that might have fallen victim to a breach. Hackers will happily It’s highly recommended that strong password hygiene or some form of multi-factor authentication (MFA) is imposedleverage these breaches because it is such easy and rich pickings. Secondly, the inherent fear of the virus makes for perfect conditions for hackers. Sadly, a lot of phishing campaigns are already luring people in with the promise of important or breaking information on COVID-19. In the UK alone, coronavirus scams cost victims over £800,000 in February 2020. A staggering number that can only go up. That’s why CIOs need to remind everyone in the company of the risks of clickbait and comment spamming - the most popular and obvious bot techniques for infiltrating a network. Notorious hacking attempts And as any security specialist will tell you, some people have no ethics and will exploit the horrendous repercussions of CV-19. In January we saw just how unscrupulous hackers are when they started leveraging public fear of the virus to spread the notorious Emotet malware. Emotet, first detected in 2014, is a banking trojan that primarily spreads through ‘malspam’ and attempts to sneak into computers to steal sensitive and private information. In addition, in early February the Maze ransomware crippled more than 230 workstations of the New Jersey Medical Diagnostics Lab and when they refused to pay, the vicious attackers leaked 9.5GB or research data in an attempt to force negotiations. And in March, an elite hacking group tried to breach the World Health Organization (WHO). It was just one of the many attempts on WHO and healthcare organisations in general since the pandemic broke. We’ll see lots more opportunist attacks like this in the coming months.   More speed less haste In March, an elite hacking group tried to breach the World Health Organization (WHO). It was just one of the many attempts on WHOFinally, we also have bots to contend with. We’ve yet to see reports of fake news content generated by machines, but we know there’s a high probability it will happen. Spambots are already creating pharmaceutical spam campaigns thriving on the buying behaviour of people in times of fear from infection. Using comment spamming – where comments are tactically placed in the comments following an update or news story - the bots take advantage of the popularity of the Google search term ‘Coronavirus’ to increase the visibility and ranking of sites and products in search results. There is clearly much for CIOs to think about, but it is possible to secure a network by applying some well thought through tactics. I believe it comes down to having a ‘more speed, less haste’ approach to rolling out, scaling up and integrating technologies for home working, but above all, it should be mixed with an employee education programme. As in reality, great technology and a coherent security strategy will never work if it is undermined by the poor practices of employees.

Security technology and AI: A powerful duo in the fight against COVID-19
Security technology and AI: A powerful duo in the fight against COVID-19

A person infected with the Coronavirus (COVID-19) infects an average of 2.5 other people within five days. You do not need to be a mathematician to realise that early detection of infected people is key to successful pandemic containment. The aim of effective containment strategies is therefore not so much to reduce the number of absolute cases as it is to extend the time frame within which they occur. Without effective containment measures, the virus spreads rapidly and is beyond the capacity of the health care system. However, if infection rates can be minimised through early detection and rapid, targeted identification of further infections, cases will continue to occur over a longer period of time and remain within the capacity of the health care system. Identifying, testing and results For example, the goal of many countries is to carry out as many Corona tests as possible to quickly identify infected people. It is then necessary to identify and reach potentially-infected people and isolate them in quarantine. This is a tried and tested procedure. But this method also costs valuable time in the fight against the virus and has many unknowns. The determination of a concrete test result alone sometimes takes up to 48 hours due to limited laboratory capacity. Added to this is the imprecise and slow procedure for determining contact persons. Or do you still remember exactly who and where you shook hands with in the last ten days - and could you provide information on this? Security technology to the rescue When it comes to the time factor, security technology can be a great help. Thermal imaging cameras and temperature sensors, for example, can help to detect a person with elevated body temperatures. Fever can also be one of the symptoms in those infected with the Coronavirus. At neuralgic points such as airports and train stations, or at entrances to hospitals, thermal imaging cameras can quickly reveal which people have fever. Presumably infected people can be easily separated and asked about other symptoms. Physical security technology can make a great contribution here. Dr. Frank Gillert, a professor at the University of Applied Sciences in Wildau, Germany states, however, as one of the leading scientists for logistics-centric security research, he demands "rapid innovation in dealing with situations like COVID-19 should be a priority". He sees enormous potential in the possibilities of IT and artificial intelligence; "We should use the disruptive changes that are currently taking place and that are challenging global orders to strengthen the significance in IT infrastructure development and also in security technology development.“ The goal in a global crisis And he is right: In global crises such as the Corona pandemic, security-related deficits become apparent and space is created for technical innovations. The goal of governments and companies is to restore security and save human lives as quickly as possible. The German data analytics powerhouse G2K, for example, has developed a Corona Detection & Containment System (CDCS) that is ready for immediate use in record time. Detection takes place in combination with AI-supported data analysis to specifically identify virus hotspots and distribution routes, as well as to identify other potentially infected persons. When developing the system, the focus was on two questions: How do I detect a suspected infected person in crowded environments and even more importantly, how do I quickly and comprehensively determine the person's contacts and previous whereabouts, and find correlations and patterns in this information? The data experts of the Berlin-based company found the answer in the combination of physical security technology and their existing data analytics platform. The G2K system The system is based on G2K's scalable IoT platform "Situational Awareness Builder" (SAB), which is already in use in several projects worldwide and sets standards in process automation and process optimisation, including security management. As soon as a person with fever is detected by the system, he or she can be immediately screened to avoid contact with other people and thus prevent possible new infections, i.e. to interrupt the chain of infection. For this purpose, stationary thermal imaging cameras or smartphones equipped with a temperature sensor accessory can be used. The potentially infected person must now be registered and referred to a doctor or hospital for further specific diagnostic measures. The entire process is covered by a mobile G2K application. A combination of security and medicine The platform can bring together available hospital capacity, infection reports, movement and contact profiles and provide an excellent picture of the source of infection. Thus, medically necessary isolations can be implemented quickly. At the same time, infected patients can use the app to document their recovery and become actively involved. All this data is centrally managed and analysed, using deep learning methods. This provides crisis managers with a single monitoring, control and resource management tool that enables immediate action to be taken to combat the spread of the virus and gives officials full transparency on the status of the pandemic. Karsten Neugebauer, founder and CEO of the company behind the solution, explains his commitment as follows "A few weeks ago we too were faced with increasing difficulties due to the Corona crisis. As we have a strong presence in Europe in particular, we had to struggle with postponed project starts and limited resources". But instead of burying their heads in the sand, G2K's dedicated team decided to declare war on the virus." "In our entrepreneurial duty, we, therefore, decided to use our available technology and equip it to fight COVID-19. Our team has been working day and night over the last few weeks to expand our software platform to enable us to contain the pandemic quickly and effectively. Politicians must now immediately push ahead with the unbureaucratic implementation of prevention and control measures such as our CDCS to ensure the stability of our public systems," demands Karsten Neugebauer. The pandemic continues As the COVID-19 pandemic spreads from continent to continent, researchers around the world are working to develop antidotes to the virus. As long as this has not been found, the spread of the virus must be slowed down internationally. Only by this can system-relevant infrastructure be held consistently. Combining modern physical security technology with platform technology and artificial intelligence provides an excellent possibility to slow down the current and for sure, future pandemics.

Emergency response and notification systems: Crucial for improving hospital security
Emergency response and notification systems: Crucial for improving hospital security

When violence or a life-threatening incident occurs, hospitals and other healthcare institutions are often in the crosshairs. Hospitals increasingly face a reality of workplace violence, attacks on patients, and threats to doctors and other support staff. And even if violence happens outside a hospital – such as an active shooter at a public place – the local hospital must be prepared to respond to an influx of injured victims. When conflicts arise inside a hospital, there is an urgent need to lock the facility down quickly. Security professionals and their teams need access control options that allow lockdowns to occur at the touch of a button. Lockdown capabilities are an important aspect of safety and security for hospitals, doctor’s offices and medical facilities The need for mass notification is also growing in the healthcare environment Fire alarm public address system The need for mass notification – another aspect of responding in an emergency – is also growing in the healthcare environment. Various systems can communicate through the fire alarm public address (PA) system to notify people in an emergency, or, alternately, to use email notification, text messaging, pagers, smart phones and/or personal computers (PCs). In lockdown situations, access control systems provide an emergency button with various triggers in the system – a hospital can lockdown specific units or the entire facility. Data capture form to appear here! Jim Stankevich, Global Manager – Healthcare Security, Johnson Controls/Tyco Security Products, points out that the safety of hospital staff, particularly nurses, cannot be overlooked. In the emergency room, 55 percent of nurses are assaulted in some way each year, which is a high percentage. The safety of nurses and all hospital staff deserves more attention. Duress/emergency notification technology Stankevich says one solution is to use duress/emergency notification technology: staff can carry and wear a ‘panic button” or have a two-key combination on their computer as an alarm trigger. When the staff member hits the panic button, a direct message can be sent to security, alerting security staff about the event and requiring a response. There has been an increase in demand for the safety and security of patients, staff and visitors at healthcare institutions, as evidenced by the recent CMS (Centers for Medicare and Medicaid Services) Emergency Preparedness Rule. As of Nov. 17, 2017, healthcare institutions that participate in Medicare or Medicaid must demonstrate compliance with the rule. Emergency preparedness systems A major challenge in compliance to this rule is balancing patient safety with comfort At its core, the rule seeks to establish national emergency preparedness requirements to ensure adequate planning for both natural and man-made disasters, and coordination with federal, state, tribal, regional and local emergency preparedness systems. A major challenge in compliance to this rule is balancing patient safety with comfort. Institutions should consider two-way communication that enables leadership to disseminate targeted messages quickly and efficiently, while arming all employees with a tool that can alert the appropriate staff should an incident occur. Solutions like this enable swift communication of issues without disturbing patients and visitors unless necessary. Effective response to emergencies “Fortunately, hospitals and their security departments are generally well equipped to respond to most emergency situations”, said John M. White, president/CEO of Protection Management, a consultant who works with hospitals to address their security needs. During the Ebola scare in 2014, however, hospitals had to re-examine their plans to ensure they were prepared to meet the challenges specific to rare and deadly disease. “Hospitals are prepared for most things, but Ebola seemed to have caught the whole world off guard, so people responded in different ways,” says White, who previously was security director of two multi-campus medical facilities before becoming a consultant. Hospital security Hospitals made adjustments to their emergency programs to determine how best to handle Ebola patients" He adds, “Hospitals made adjustments to their emergency programs to determine how best to handle Ebola patients and to protect other patients and staff. It was a new threat that healthcare organisations had not specifically addressed.” A particular concern was the possibility of an infected person walking into an emergency room and infecting other people and/or requiring facility decontamination. One role the hospital security department plays in such an emergency is to control access to the facility and to control visitors’ movements once they are inside the facility, says White. If the Ebola scare had progressed to the point that a hospital would need to screen patients, security would be positioned at the front entrance to help with that screening and, if necessary, to direct patients to a specific area for quarantine. Protective equipment Security might also need to wear protective equipment to handle a patient who is resistant to treatment, for example. There are often interactions between security personnel and the general public, a scenario that becomes more complicated if Ebola or a similar infection is likely. In general, security would be tasked with maintaining order and keeping people where they need to be, freeing up the medical professionals to do their jobs more efficiently, says White. To prepare for the impact of the Ebola scare, hospitals addressed various training and equipment needs and adjusted their disaster/emergency response plans. Read parts two and three of our heathcare mini series here and here.