Pivot3 Serverless Computing Storage
Pivot3 Serverless Computing Storage

Pivot3's patent-pending technology, termed Pivot3 Serverless Computing™, allows customers to absorb computer-intensive workloads, now performed using stand-alone application servers, into Pivot3's X86-based storage nodes running the Xen open-source hypervisor.Pivot3's unique approach to storage and server convergence introduces server consolidation benefits such as reduced power, cooling, rack space and cost to environments that have not typically been considered good candidates for conventional server virtualisation deployments.This technology offers hard savings to customers with large-scale storage and server environments.  A typical customer with 500 cameras will realise real savings of 44 percent in power and cooling costs, 51 percent in rack-space usage and 22 percent in cost savings by eliminating 15 physical servers and five physical external failover storage chassis.  These real savings are meaningful to large-scale users in markets where power efficiency plays a major role in new product decision-making.Serverless Computing™ represents a new class of emerging technology where I/O and compute resources are closely coupled together to serve the needs of I/O-intensive workloads, with less complexity, easier management, and higher availability than distributed solutions.By layering server virtualisation on top of their high-performance, highly available, x86-based storage controllers, Pivot3 allows organizations to harness huge quantities of I/O without complex fabrics or complex management.This infrastructure delivers a new level of consolidation that will reduce power, cooling, and space requirements when compared to traditional infrastructures.  For the right applications needing highly available access to high-bandwidth storage, Pivot3's Serverless Computing may be a game-changing innovation.ViDiCore KG is the authorised and exclusive representative for Arecont Vision, Pivot 3, Mirasys and Veracity in Europe.

Add to Compare

Browse Video Servers (IP Transmission) / Video Encoders

Video servers (IP transmission) - Expert commentary

Securing mobile vehicles: The cloud and solving transportation industry challenges
Securing mobile vehicles: The cloud and solving transportation industry challenges

Securing Intelligent Transportation Systems (ITS) in the transportation industry is multi-faceted for a multitude of reasons. Pressures build for transit industry players to modernise their security systems, while also mitigating the vulnerabilities, risks, and growth-restrictions associated with proprietary as well as integrated solutions. There are the usual physical security obstacles when it comes to increasingly integrated solutions and retrofitting updated technologies into legacy systems. Starting with edge devices like cameras and intelligent sensors acquiring video, analytics and beyond, these edge devices are now found in almost all public transportation like buses, trains, subways, airplanes, cruise lines, and so much more. You can even find them in the world’s last manually operated cable car systems in San Francisco. The next layer to consider is the infrastructure and networks that support these edge devices and connect them to centralized monitoring stations or a VMS. Without this layer, all efforts at the edge or stations are in vain as you lose the connection between the two. And the final layer to consider when building a comprehensive transit solution is the software, recording devices, or viewing stations themselves that capture and report the video. The challenge of mobility However, the transportation industry in particular has a very unique challenge that many others do not – mobility. As other industries become more connected and integrated, they don’t usually have to consider going in and out or bouncing between networks as edge devices physically move. Obviously in the nature of transportation, this is key. Have you ever had a bad experience with your cellular, broadband or Wi-Fi at your home or office? You are not alone. The transportation industry in particular has a very unique challenge that many others do not – mobility Can you trust these same environments to record your surveillance video to the Cloud without losing any frames, non-stop 24 hours a day, 7 days a week, 365 days a year? To add to the complexity – how do you not only provide a reliable and secure solution when it’s mobile, travelling at varying speeds, and can be in/out of coverage using various wireless technologies? Waiting to upload video from a transport vehicle when it comes into port, the station, or any centralised location is a reactive approach that simply will not do any longer. Transit operations require a more proactive approach today and the ability to constantly know what is going on at any given time on their mobile vehicles, and escalate that information to headquarters, authorities, or law enforcement if needed; which can only occur with real-time monitoring. This is the ultimate question when it comes to collecting, analysing, and sharing data from mobile vehicles – how to get the video from public transportation vehicles alike to headquarters in real time! Managing video data In order to answer this question, let’s get back to basics. The management and nature of video data differs greatly from conventional (IT) data. Not only is video conducted of large frames, but there are specific and important relationships among the frames and the timing between them. This relationship can easily get lost in translation if not handled properly. This is why it’s critical to consider the proper way to transmit large frames while under unstable or variable networks. The Internet and its protocols were designed more than two decades ago and purposed for conventional data. Although the Internet itself has not changed, today’s network environments run a lot faster, expand to further ranges, and support a variety of different types of data. Because the internet is more reliable and affordable than in the past some might think it can handle anything. However, it is good for data, but not for video. This combination makes it the perfect time to convert video recording to the Cloud! Video transmission protocol One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet. ITS are in dire need for reliable transmission of real-time video recording. To address this need a radical, yet proven, video transmission protocol has recently been introduced to the market. It uses AI technology and to adapt to different environments in order to always deliver high quality, complete video frames. This protocol, when equipped with encryption and authentication, enables video to be transmitted reliably and securely over the Internet in a cloud environment. One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet Finally, transportation industry has a video recording Cloud solution that is designed for (massive) video that can handle networks that might be experiencing high error rate. Such a protocol will not only answer the current challenges of the transportation industry, but also make the previously risky Cloud environment safe for even the most reserved environments and entities. With revolutionary transmission protocols, the time is now to consider adopting private Cloud for your transportation operations.

Trends and challenges we will see in the AI-driven security space in 2021
Trends and challenges we will see in the AI-driven security space in 2021

For decades, the nature of global safety has been evolving. From physical security threats like large-scale terrorist attacks and lone actor stabbings to chemical threats such as the Salisbury poisonings and even microbiological threats such as COVID-19, new challenges are constantly arising and the threat landscape we operate in today is constantly changing. Compounding the complexity of the security issues is the complexity and nature of attacks. With the economic downturn, there is the traditional rise in theft, violence and other crimes. Compound this with unmanned businesses and work-at-home staff, and there is a perfect storm for a rise in security threats. Artificial intelligence (AI) and specifically the branch of AI known as machine learning (ML), was already causing widespread disruption in many industries, including the security industry. AI has been a driving force to replace labour-based business models with integrated data and actionable intelligence that is context-aware. It has become apparent that AI will play a big part in the ongoing fight against both pandemics such as COVID-19, as well as other threats that we may face in the future. With all of this in mind, 2021 is poised to be a big year for AI growth. While AI is going to continue to impact our lives in dozens of ways, from smart sensors to face mask compliance detection, the following reflects a few top trends and challenges that I have my eye on for 2021 as we close out this year. The rise of smart city investments One such example is the increasing development of smart cities and how AI can be leveraged to build safe communities. To date, we’ve seen an increase in the number of smart city programmes around the globe; cities that are beginning to deploy innovative technologies for the management and ease of life services. Compounding the complexity of the security issues is the complexity and nature of attacks Typical development of a city includes standard infrastructure - roads, schools, power, water, transportation. Now, internet, data and AI capabilities are part of the standard infrastructure requirements for all new developments. AI promises to deliver increased efficiencies with the infrastructure that will accommodate growing populations while reducing our impact on the environment, resources, and communities. Global cities now account for more than half of the world’s population, and the United Nations projects the number to balloon to 68% by mid-century. Owing to both demographic shifts and overall population growth, that means that around 2.5 billion people could be added to urban areas by the middle of the century, predicts the UN Department of Economic and Social Affairs (DESA). With an increase in population has come an increase in global spending on smart city initiatives to drive down the impact of growing urban concentration. Global spending on smart city initiatives is expected to total nearly $124 billion this year, an increase of 18.9% over 2019, according to IDC's Worldwide Semiannual Smart Cities Spending Guide, while Singapore, Tokyo, London and New York as the big spenders - expected to spend more than $1 billion in 2020. Using AI-driven technology to create safer public and private spaces Today, security solutions driven by AI are being developed and can be covertly deployed across a range of physical environments to protect the population in a more efficient, and accurate manner. As we look ahead to the future of public safety, it’s clear that new AI technology can dramatically improve the effectiveness of today’s physical security space. One such deployment is the use of video object recognition/computer vision software that can be integrated into existing video monitoring security (VMS) systems. These enhanced VMS systems can be deployed both inside and outside of buildings to identify risks and flag threats, such weapons, aggressive behaviours, theft, and safety compliance. This helps to minimise the impact of a breach by an early alert to onsite security in real-time to the location and nature of the potential threat, allowing them to intervene before a loss occurs. These same AI-enabled video solutions can similarly be used to provide advanced business operations in retail, logistics, and manufacturing organisations. Multi-sensor security solutions Also, targeted magnetic and radar sensor technologies, concealed in everyday objects like planter boxes or inside walls, can now scan individuals and bags entering a building for concealed threat objects. Using AI/machine learning, these two sensor solutions combined can identify metal content on the body and bag and match the item to a catalogue of threat items, such as guns, rifles, knives and bombs. Security solutions driven by AI are being developed and can be covertly deployed across a range of physical environments Without this advanced multi-sensor solution, it becomes nearly impossible to discover a weapon on a person's body before it appears in an assailant’s hands. This multi-sensor solution allows for touchless, unobtrusive access to a building, but allows for immediate notification to onsite security when a concealed threat is detected. The hidden technology thus empowers security staff to intercept threats before they evolve into a wider scale attack, while also maintaining the privacy and civil liberties of the public, unless, of course, they are carrying a concealed weapon or pose a physical threat. With the advent of sophisticated surveillance and technological innovation, a level of caution must be exerted. Despite the ongoing global debate, there remains little regulation about the use of AI technologies in today’s physical security space. One thing is certain; it must be deployed in the right place, at the right time, with the right privacy and civil liberty protection objectives. People don’t want to be protected by omnipresent, obstructive and overbearing security systems that infringe on their privacy and civil liberties. They want a proper balance between security and their current way of life, one that must be fused together. Technology and tracing COVID-19 Machine learning-based technologies are playing a substantial role in the response to the COVID-19 pandemic. Traditionally, the key purpose of surveillance systems has been to detect and deter threats, including the detection of visible and hidden weapons and abnormal behaviour. While this, of course, remains a primary focus, today we are seeing how surveillance systems defend against new invisible threats, as well as rapidly automate the process of contact-tracing to capture and contain a virus before it spreads. Again, the ability to track and trace through parsing algorithms that can manage through enormous amounts of data provides a highly scalable and rapid response mechanism to control the spread of threats. AI has demonstrated potential for identifying those displaying symptoms of infectious diseases, without requiring physical human contact Although the threat may not be visible, it is just as destructive. By incorporating AI into existing technologies, government, healthcare and security professionals can monitor public spaces and environments through the combined use of digital and thermal video surveillance cameras and video management systems); just one of the solutions being explored. AI has demonstrated potential for identifying those displaying symptoms of infectious diseases, without requiring physical human contact. By Using AI-powered video analytic software, businesses can monitor face masks, social distancing and large gathering compliance and also detect elevated body temperature. Critically, technology must be capable of both identifying and tracking the virus but also be unobtrusive. An unobtrusive system that is adaptable enough to be deployed across a range of environments where the public gathers in enclosed spaces is necessary to be effective. Security in 2021 Technology has proven itself to be a valuable ally in times of crisis. For smart cities, the use of innovative AI/machine learning technologies will help optimise security solutions in areas that are brimming with potential. As we look ahead to the future of security in a world that is impacted by such a wide range of threats, from physical to chemical to microbiological, it’s clear that new technologies, specifically AI can dramatically improve the effectiveness of security systems and help us to better defend against a wide spectrum of threats. Technology has a huge role to play in making our communities safe in 2021 and beyond, but for security systems to be effective, they must not be oppressive or obstructive. This will ensure they have the full support of the public - the key to success.

7 steps to make VMS system design and installation easier
7 steps to make VMS system design and installation easier

For those of you old enough to remember, video matrix switchers were once the heyday of surveillance camera control. These cumbersome antiques were at the heart of every major video surveillance system (CCTV at the time) in premier gaming properties, government installations and corporate industrial complexes. They required more physical labour to construct and configure than perhaps the pyramids – maybe not – but you get the picture. And then digital video made its way in to the market and everything changed, transforming the physical demands for camera control and management from a hardware-centric to a software driven process. We’ve come a long way in a few short years, and the borders that once defined IT and security continue to diminish, if not disappear completely There’s no doubt that this migration also presented significant challenges as many security professionals often struggled with all things IT and software programming being one of the industry’s soft spots. Fortunately, we’ve come a long way in a few short years, and the borders that once defined IT and security continue to diminish, if not disappear completely. However, the complexities of today’s VMS functionality can be intimidating for anyone tasked with installing one of these systems given all of the user-defined options available from the simplest camera sequencing and bandwidth allocations to mobile management and enterprise level integration. This is where truly advanced VMS solutions need to shine on both the operations and the design/build sides of the equation. Smart VMS design There are more solutions products labelled “VMS solutions” out there than ever before. The issue is the fact that many of these “solutions” really don’t fall into the category of a true VMS by today’s standards but offer basic camera and NVR control. No doubt that there is a place for such software programs in the market. However, VMS solutions from the likes of OnSSI and other industry-leading companies offer distinct and superior management and control capabilities for demanding security and business intelligence applications. Perhaps of equal importance, these top-tier VMS solutions incorporate provisions for installers, so they have a clear and easier implementation path. OnSSI offers VMS solutions with smart camera drivers Here are seven attributes that can assist with the design and implementation of an advanced VMS solution: 1) Open architecture platform We need the ability to easily integrate with other systems and scale for future developments and physical system growth The ability to easily integrate with other systems and scale for future developments and physical system growth is largely dependent on a systems platform architecture. Here’s where VMS solutions with open architecture provide a distinct advantage. Open-architecture solutions expand functionality by facilitating greater integration between multiple systems and components. This not only makes VMS solutions with open architecture easier to implement, it makes them extremely cost-efficient by eliminating the need for proprietary solutions. Open architecture systems also provide adherence to industry standards such as ONVIF and PSIA, as well as compression formats such as H.265 and MJPEG, and help ensure system integration and support of an extensive range of manufacturers’ cameras and off-the-shelf hardware. Be wary of VMS solutions with limited camera manufacturer support. 2) Simple licensing processes and pricing Camera licenses and pricing is always a touchy subject, as any misunderstanding of a specific VMS solutions’ licensing terms can prove to be costly after the fact. And it often seems that some VMS suppliers have gone to great lengths to complicate the process as to obscure actual Total Cost of Ownership (TCO). Perhaps the most direct, simple and straightforward camera licensing and pricing method is to have one license per IP address used by each camera/encoder on multi-channel devices. These should be perpetual licenses with no required annual fees or subscriptions. Additionally, the licensing agreement should be all inclusive without added fees for multiple clients, failover servers, active directory support, I/O devices, redundant management servers, technical support or security patches and updates. 3) Mixing and matching camera license types The ability to mix and match different camera license types within the same system helps facilitate a seamless and simple migration of new and pre-existing systems with minimal downtime or interruption in operation. The ability to mix and match camera licenses not only saves valuable design and installation time, it can provide considerable savings when integrating large, multi-tenant systems. Mix and match capabilities also allow system designers to apply specific feature sets to specific groups of cameras to best leverage functionality and budgets, as well as providing the flexibility to implement an on-site, virtual, or cloud-based VMS solution, without any additional cost. 4) Auto camera detection and configuration Another VMS set-up feature that eases the install process is the ability to forego device registrations or MAC address requirements Another VMS set-up feature that eases the install process is the ability to forego device registrations or MAC address requirements. This functionality allows installers to instantly locate cameras on the network and configure them centrally so they can easily replace older cameras while seamlessly retaining video recorded from them. The auto detection capability should also include the ability to detect and import CSV files, which can then be stored and used to configure camera templates for future camera installation profiles. 5) Smart camera driver technology VMS solutions with smart camera drivers offer valuable assistance during system implementation, and any time new cameras are added to the network or replace older models. Manufacturer-specific smart camera drivers expand the range of model-specific static drivers. Instead of storing the device’s information (codecs, resolutions, frame rates, etc.) statically, a VMS with smart camera drivers queries devices for their capabilities using the manufacturers’ proprietary protocol. All that is required for configuration is that the camera is available on the network. Smart camera drivers eliminate the need to wait for model-specific drivers or installation of driver packs, allowing for newly released cameras to be used immediately. Network security is an area where leading VMS suppliers like OnSSI have ramped up development efforts to stay ahead of hackers  6) Importance of network security Network Security is perhaps the greatest challenge faced by industry professionals today Network security is perhaps the greatest challenge faced by industry professionals today. This is an area where leading VMS suppliers like OnSSI have ramped up development efforts to stay ahead of hackers. New security developments to look for include TLS 1.2 encryption protocols for camera-to-server communications (SSL 3.0 supported for older cameras), as well as server-to-server communications. Additional safeguards to consider include: randomised video databases with no camera identification information to secure recorded data; support for Active Directory authentication; AES encryption between servers and clients; and AES encrypted exporting. 7) Automatic updates Regardless of the supplier you select for your VMS solution, they should be consistently providing new updates and security patches on a frequent if not regular basis. Keeping up with these updates can be a burden and are often overlooked leading to system failures and breeches. Advanced VMS solutions now feature automatic update service checks on a system-wide basis, eliminating the need to manually update individual servers and devices. This ensures that your VMS system always has the latest drivers, fixes and updates which assures overall security while reducing TCO. So next time you’re getting a demo of the latest and greatest VMS solution, remember to ask what it offers in terms of design and implementation tools. Half the battle with new technologies is getting them installed and working properly. Without the right tools to accomplish these critical first steps, all the functionality in the world will do you little good.

Latest Pivot3, Inc. news

Pivot3 appoints Darin Dillon as the Vice President to increase sales activities for the energy sector
Pivot3 appoints Darin Dillon as the Vice President to increase sales activities for the energy sector

Pivot3, the provider of smart infrastructure solutions for enterprise-grade video, announces that it has named Darin Dillon as Vice President, energy. In this role, Dillon will lead Pivot3’s sales efforts in the energy sector. Dillon will further help expand Pivot3’s already strong presence in the critical infrastructure segments of utilities, oil and liquid natural gas markets. “Energy is a core focus for Pivot3 and Darin’s long-term collaborative relationships with channel partners and customers in the energy sector position us for further market successes,” said Mike Dunbar, Pivot3 senior vice president global sales and chief revenue officer at Pivot3. Innovative security system “Darin is a leader with a track record of successes in developing out vertical markets, cultivating long-term partnerships and working to create innovative security system solutions.” Dillon has more than 35 years of experience as a business development Dillon has more than 35 years of experience as business development and sales leader working in the electronic security and integrated systems industry for companies such as Convergint, Tyco, and Securenet. Most recently at Convergint, Dillon developed the company’s oil and gas vertical market to a run rate of over $100 million a year by working closely with partners and customers to deliver advanced integrated solutions in the oil and gas industry. Mission-critical video solutions An active leader in his industry, Dillon serves on the board of the Energy Security Council, holds the position of Chairman of the Membership Committee and teaches graduate-level security courses at the University of Houston. Dillon served as Chairman of the ASIS Houston Chapter, and from 2012 to 2018, Dillon served as a board member of ASIS International’s Professional Certification Board. “The critical infrastructure segments of utilities, oil and liquid natural gas impact our daily lives and help our global economy grow,” said Dillon. “Pivot3 is already one on the leading infrastructure providers in other critical markets, and I look forward to working with our partners to bring the safety and security benefits of our mission-critical video solutions to more energy customers.”

Pivot3 announces the addition of HCI appliances to utilise intelligent video analytics at scale
Pivot3 announces the addition of HCI appliances to utilise intelligent video analytics at scale

Pivot3, the provider of intelligent hyperconverged infrastructure (HCI) solutions for mission-critical video, announces the addition of HCI appliances to the Pivot3 HCI portfolio purpose-built for running and utilising intelligent video analytics at scale. In conjunction with these new solutions, Pivot3 has also developed a reference architecture for deploying video content analytics platform BriefCam on Pivot3 infrastructure. The new Pivot3 solutions and reference architecture are designed to ensure that organisations can extract the full value of insights from their mission-critical video by making it secure, retrievable and actionable. Video analytics software Video analytics software and infrastructure constitute an important and quickly expanding market segment. However, sizing, configuring, and deploying video analytics at scale can be challenging, often resulting in under or over-sizing and not realising the full value of the solution and the potential ROI. Analytics technology is rapidly evolving, so organisations need flexible infrastructure to keep pace and accommodate different deployment models. Pivot3 is the HCI provider to integrate and leverage NVIDIA T4 GPUs and the NVIDIA Metropolis platform for video analytics use cases. Pivot3’s new analytics appliances provide optimised NVIDIA GPU-dense configurations, designed to support video analytics functions including line crossing, licence plate recognition, object and event filtering, appearance similarity, real-time and smart alerts, multi-camera search, and video search and VIDEO SYNOPSIS® capabilities. Intelligent video applications Pivot3 excels at mission-critical video with the only HCI platform designed for intelligent video applications. Pivot3 infrastructure deployments result in 50% lower TCO for video management and analytics through reduced hardware footprint and resource consolidation, reduced risk due to eliminating critical analytics downtime and granular pay-as-you-grow scaling. "Customers are turning to video analytics to help get more out of the massive amount of video they are capturing," said Ben Bolles, vice president of product, Pivot3. "Video analytics is crucial to security operations and is incredibly compute-intensive; Pivot3 excels at mission-critical video with the only HCI platform designed for intelligent video applications.” Pivot3 has tested and benchmarked BriefCam’s video analytics in Pivot’s Solutions Test Lab and has developed a comprehensive set of deployment and configuration best practices. Mission-critical environments Pivot3’s validated reference architecture for the BriefCam Video Content Analytics platform optimises the business and technical considerations associated with deploying next-generation video analytics in mid-to-large-scale mission-critical environments. The reference architecture is based on a combination of next generation analytics, video management and enterprise grade IT infrastructure powered by NVIDIA GPUs, with all the simplicity, economics and ease of scaling that security teams need. "The growing demand for actionable data in mission-critical environments is a significant driver toward providing customers with a tested, resilient and scalable solution to deploy comprehensive video analytics," said Yogev Wallach, Senior Product Manager, BriefCam. "Pivot3's intelligent HCI platform supports the specific performance parameters and workload requirements of our innovative and extensible video analytics platform. This optimises the sizing and deployment process for our system integrators and accelerates the time to ROI for our customers.”

Pivot3 announces that HCI Platform gets certified with BVMS certification to reduce ownership cost
Pivot3 announces that HCI Platform gets certified with BVMS certification to reduce ownership cost

Pivot3, the provider of intelligent infrastructure solutions for mission critical video, announces it is the first hyperconverged infrastructure (HCI) platform to be certified with BVMS – the video management system from Bosch. This certification enables organisations using BVMS to realise additional improvements in economics, simplicity and agility in their physical security environments that only Pivot3’s video-optimised infrastructure can offer. Pivot3’s HCI surveillance solution is the industry’s only hyperconverged infrastructure designed specifically for the unique demands of video workloads and complements the embedded resilience, scalability and reduced total cost of ownership benefits BVMS delivers. Mission-critical video surveillance We are pleased to partner with the Bosch team on this validation” Pivot3’s hyperconverged infrastructure unifies storage, compute and virtualisation resources into a highly resilient, easy-to-deploy and scale solution that reduces cost, complexity and organisational risk. Pivot3 is purpose-built for mission-critical video surveillance and security operations with the ability to consolidate video management, video storage, video analytics, access control and other security workloads onto a common infrastructure. Pivot3’s infrastructure also uses intelligent automation to deliver proactive system health, configuration optimisation and automatic information sharing with Pivot3’s Support Cloud to ensure systems are running at peak performance and availability. “Bosch’s focus on resilience, reduced cost of ownership, and scalability address the business needs that enterprises such as airports, commercial buildings, manufacturing plants, and large entertainment complexes have,” said Mike Koponen, sr. director business development, Pivot3. “We are pleased to partner with the Bosch team on this validation; this certification validates the use of Pivot3 HCI with BVMS for customers wishing to deploy our intelligent solutions together.”

Related white papers

Security investments retailers should consider for their 2021 budget

Reducing the cost of video surveillance system deployment and operation

Five things to consider for AI with video technology