Browse CCTV Camera lighting

CCTV camera lighting - Expert commentary

How to enhance IoT applications with network video surveillance
How to enhance IoT applications with network video surveillance

Remember the old adage “The whole is greater than the sum of its parts?” Nowhere is that truism more evident than when you add network video to the current generation of Internet of Things (IoT) solutions. Whether we’re talking about industrial IoT applications, “Smart – X” (city, building, parking etc.) or retail operations, integrating network video into the solution provides value far beyond simple situational awareness. Optimising sophisticated video technology When video systems first moved from analogue to digital and then became part of the IoT world, they were primarily used to provide visual validation of sensor-detected events. For instance, if an industrial controller sensed an environmental issue such as a temperature exceeding set threshold maximum limits, the sensor would trigger the management software to notify the operator that this event had occurred. The operator could then pull up the video feed of the closest camera and observe the area remotely. While this application is simple, it shows how video enhances sensor management.  As edge devices, such as sensors and network video become more intelligent, the interactions between systems are growing in sophistication and generating even greater value than each system could provide on its own.  To appreciate how these smart applications are being used to improve overall efficiencies and profitability, let’s delve into three areas where they’re being deployed: intelligent buildings, smart cities, and smart retailing.   By overlaying intelligent operational sensors with intelligent video, it’s now possible to automate lighting levels based on motion detection Video-based operational analytics Applying intelligent monitoring to environmental equipment (HVAC) makes it easy for building owners and property managers to determine existing operating costs based on current equipment performance. They can then compare that amount to the cost of upgrades and potential cost savings over time. Lighting is another significant operating cost within building management. By overlaying intelligent operational sensors with intelligent video (light sensors), it’s now possible to automate lighting levels based on motion detection. Lights can automatically turn on or off, brighten or dimmed, to eliminate wasteful energy consumption. With the addition of occupancy analytics via intelligent video, property managers can determine what caused the motion and learn other operational details such as occupancy counts. Did someone walk through and area causing lighting to turn on or up? Did they dwell in this area? These specifics can help managers efficiently optimise lighting controls and reduce the overall operating cost of the property. Businesses are also using smart applications to optimise allocation of desk space and conference areas. For instance, intelligent video can determine conference room occupancy (in use, number of people in room, free space even though showing booked) far better than stand-alone motion sensors. When tied to automated room assignment systems, the additional statistics provided by video analytics might suggest room changes based on room size and number of attendees through back-office applications such as Microsoft Outlook. These examples are just a few of a growing list of available video-based operational analytics currently on the market. Video analytics in smart cities Initial forays into smart city technologies such as smart lighting, smart grid, smart parking and so on relied on standalone sensor technologies. Their capabilities were good but limited. Smart Lighting for instance would use basic light detectors to turn street lighting. Smart Parking and traffic systems would use weight sensors to trigger vehicle counts, traffic signal changes or determine if a parking space was in use and paid for. Augmenting these applications with intelligent video and analytics, however, opens up a whole new world of additional details. In Smart Lighting, the video sensor can now trigger a change in lighting based on rules such as vehicular and pedestrian events. Video analytics can yield additional metadata such as vehicle type (commercial versus public use). Smart Parking becomes much more effective when you can begin to provide vehicle detail such as vehicle type or other information based on licence plate recognition. These additional details can help parking lots operate more efficiently and offer value-added services like space reservation and open space location notifications.  Augmenting smart city applications with intelligent video and analytics opens up a whole new world of additional details Smart Grid offers some less obvious but equally valuable system augmentation capabilities. We often associate Smart Grid with simple automated meter reading but these systems also traverse critical power infrastructure. Solution providers in this arena are now offering heightened asset and perimeter protection via integration of network-based radar detection with video and audio analytics. This strategic mix of technologies can be used to minimise false detection alarms, turn on/off or change lighting levels and point cameras to areas of interest for extremely effective and cost-effective perimeter security. Network video for retail intelligence Retailing was one of the earliest adopters of smart device integration with network video and video analytics to support loss prevention and customer safety. They’ve been using video to analyse customer traffic and behaviour in order to improve product placement, increase product sales, as well as cross-sell related items. Adding programmable “Digital Signage” to the mix created new opportunities to display targeted messages based on viewer demographics about additional products and services of potential interest. Integrating network video with point-of-sale terminals to reconcile cash register receipts, adding heat mapping analytics to study customer foot traffic patterns, measuring check out wait times to increase employee productivity and efficiency as well as improve the customer experience are just some of the ways retailers have applied the principles of IoT to their advantage. Overlay intelligent building controls and you can see the exponential power of integrating intelligent video with other IoT devices and systems. Retailing was one of the earliest adopters of smart device integration with network video and video analytics to support loss prevention and customer safety Minimising metadata overload Smart application integration produces an enormous amount of metadata. Collecting, transporting and synthesising this data into meaningful business intelligence can be daunting. It requires disciplined use of resources from the network infrastructure transporting the data locally to the various cloud technologies (private cloud, hybrid cloud, public cloud) storing and disseminating it securely.  Generally smart sensor data is fairly light weight in terms of actual data transmitted. Adding video elements can significantly increase bit-rate (bandwidth and storage) requirements. This highlights the need for the video to be more intelligent and interactive with the intelligent sensor and edge device technologies so that resources can be used more efficiently. Smart applications let you do that. You can fine tune video rules and optimise transmission based on retention value. You can program the video to sensor triggers or events, transmitting lower frame rate and resolution video for less interesting video and increasing the video settings when higher quality video is more relevant and valuable based on these sensor triggers. The back-end collectors of sensor metadata are becoming more mainstream and easier to operate.  In many sectors, service providers are offering management of this sensor output “As a Service.”  As smart IoT technology continues to mature, the benefits of integration between network video systems and other network solutions will only get better. We’re already seeing greater efficiency in operations as well as higher quantifiable returns on investment through cost savings and more in-depth, usable business intelligence.

Increased power grid security tackles natural and man-made threats
Increased power grid security tackles natural and man-made threats

Utility security staff have a responsibility to ensure they can identify risks associated with security threats Protecting North America’s power grid is a thankless job. Day in and day out, the good citizens of the United States and Canada wake up with the assumption that when they get out of bed each morning and flip on the lights, the room will illuminate, the coffee pot will come to life and their mobile phone will have been fully charged. After all, we live in a modern First World society, where we have come to depend on timely and efficient power at our fingertips. In reality, that reliable electricity that we all enjoy has many people working around the clock to ensure its reliability, resiliency and security. Today’s grid operators are inundated with natural and man-made threats. As utilities tackle the monster of the moment, which is the evolving cybersecurity threat, we must not take our eyes off the more primitive threat.   Security threats to US grid Electricity is perhaps the most vital of the critical infrastructures and key resources that support our society. The mission of the North American Electric Reliability Corporation (NERC) is to ensure the reliability of the North American bulk power system (BPS). While electric utility companies are responsible for administering the day-to-day operations of the electric grid, regulators such as NERC and the Federal Energy Regulatory Commission (FERC) are charged with the overall responsibility of ensuring reliability and security. NERC develops and enforces Reliability Standards, annually assesses seasonal and long?term reliability, monitors the bulk power system through system awareness, operates the Electricity Information Sharing and Analysis Center (E-ISAC) and educates, trains and certifies industry personnel. Normal everyday operations of the system are the responsibility of utility owners and operators. Currently, the most significant reliability threat to the U.S. grid is associated with squirrels and balloons, and not religiously inspired terrorists During emergencies, NERC supports industry actions to respond, mitigate and restore the BPS to normal operation by facilitating effective information sharing and communication with and between NERC registered entities, government agencies and the media. This information is not focused on operational decision making; but instead provides utilities data, best practices and mitigation strategies to help recover from crisis. Obviously as a regulatory body, NERC must stay out of emergency response until the utility has best mitigated the threat or reliability issue. Currently, the most significant reliability threat to the U.S. grid is associated with squirrels and balloons, and not religiously inspired terrorists. However – and more applicable to grid operators – we have recently seen noteworthy interest in disabling or destroying critical infrastructure. Coordinated attacks specifically targeting the grid are rare, but an attack by a disgruntled former employee, ideologically motivated activist, or a criminal stumbling across a “soft target”, could inflict significant damage. With an interconnected grid of over 450,000 miles of high voltage transmission lines (100 kV and higher) and over 55,000 substations (100 kV and larger), the targets of opportunity are endless. An attack by a disgruntled former employee, ideologically motivated activist, or a criminal stumbling across a “soft target”, could inflict significant damage Critical infrastructure protection Critical infrastructure protection is a cyclical process incorporating prevention, detection, mitigation, response and recovery. The key to this protection is the identification of credible threats, which will assist energy companies in assessing risks and potential vulnerabilities (weaknesses) of their facilities. Once a threat has been thoroughly analysed, it is then possible to institute preventative measures to deter, detect and delay an attack. Of course, critical infrastructure protection planning must always include mitigation, response and recovery actions in the event an attacker is successful. While the security of the grid is a shared responsibility between the government and the private sector, the primary responsibility rests with utility owners and operators. Utility security staff have a responsibility to ensure they are able to receive and act upon criminal intelligence and be prepared to identify risks and vulnerabilities associated with security threats. Any protection programme that is developed must be as efficient and cost-effective as possible, as budgets are limited and ratepayers are sensitive to wasteful spending. Effective security programmes rely on risk management principles and associated tools to establish priorities, allocate budget dollars and harden infrastructure sites. Physical security protection encompasses defensive mechanisms to prevent, deter and detect physical threats of various kinds. Specifically, these measures are undertaken to protect personnel, equipment and property against anticipated threats. Properly conceived and implemented security policies, programmes and technologies are essential to ensure a facility’s resistance to threats while meeting demand, reliability and performance objectives. Unfortunately, many do not realise the amount of reports, guidelines, standards and assessments that have been developed for use Electricity industry physical security standards Significant progress has been made in the electricity industry surrounding the issue of security. Unfortunately, many do not realise the amount of reports, guidelines, standards and assessments that have been developed for use. The industry has gone through multiple iterations of mandatory Critical Infrastructure Protection (CIP) Standards that focus on security protections. The CIP Standards, while not perfect, may be an example for other sectors to immolate. These standards are a minimum baseline for compliance and utilities should not assume that because they have a good compliance programme they are somehow immune from attack. In addition, many electric utilities undergo a sector-wide Grid Security Exercise (GridEx) every two years to hone their skills and provide updates to their security practices and policies. This is in addition to annual exercises mandated by the cyber standards. It is fair to say that the industry has been very responsive to the evolving security threat and the mandatory requirements found within CIP compliance. As a result of the 2013 California substation attack that destroyed $15 million dollars in infrastructure, industry now has a physical security standard. This standard was created to protect the most critical transmission substations and control centres in North America. While protections vary, many utilities have upgraded their security measures to include concrete or non-scalable perimeters, robust access control, cameras, lighting and armed guards. It is highly likely that we will one day see similar standards put in place to better protect non-nuclear generation facilities, but only time will tell. Many utilities have upgraded security measures to include concrete perimeters, robust access control, cameras, lighting and armed guards The piece that the industry continues to struggle with is information sharing and the ability to quickly obtain actionable threat intelligence; an issue which has been combatted head-on through the sharing of security information amongst utility partners. Large utilities with the manpower and resources to address this initiative are changing the security model from reactive to proactive. If you understand your adversary’s tactics, intent, and capabilities, you can develop strategies to combat their attacks and better plan for future threats. Better, more proactive security, can be achieved through information sharing agreements and partnerships with other utilities, regulatory agencies and intelligence partners. Many utilities do not have the dedicated resources to dissect and aggregate this data and are thus unable to react appropriately, or wind up drawing inaccurate conclusions. As a result, the electricity sector is demanding more access to actionable intelligence and threat streams. With this added intelligence, utilities can better pinpoint threats to specific systems and focus efforts on system recovery and restoration. This will undoubtedly drive better, more informed responses to security incidents. The FBI, DHS and the DOE have made considerable strides in improving information sharing, and giving classified access to intelligence products Improving information sharing Over the past few years, the FBI, DHS and the DOE have made considerable strides in improving information sharing and giving classified access to intelligence products such as bulletins, alerts and secret level briefings. These products have been used to mitigate threats, reduce risk and update internal security policies. Additionally, this data flow has enhanced communications between security teams, management and board members by providing authoritative threat warnings. This ultimately drives better investment strategies by more directly connecting security priorities with business risk management priorities. Unfortunately, utilities still see risks in sharing information with federal partners. Recently, the Washington Post released an article with a salacious headline falsely suggesting that the grid was hacked via Russian malware. Even after correcting the story, the question remains: who leaked the information to the Washington Post? Utilities all over the country were witnessing an information sharing failure. We must assume that at some point in the future a North American utility will suffer from a planned and coordinated attack against electrical infrastructure. Have we looked at credible threats closely enough and did we prepare our people to respond, recover and communicate? As an industry, we will be judged and hard questions will be asked about how seriously we considered the threats and what we did to mitigate future attacks. Success will be determined by how quickly we are able to respond and the swiftness of system recovery. There is no doubt that security is an “all hands” approach by everyone involved.

3 Reasons to switch to LED security lighting
3 Reasons to switch to LED security lighting

Increasing the quality of illumination with LED can help deter crime and improve the accuracy of video analytics One of the greatest challenges that indoor and outdoor security surveillance solutions face is lack of light. However, obtaining the proper amount of illumination for security goes beyond merely flooding a specific area with light. Without an adequate lighting source, video cameras are ineffective. When capturing only dark, blurry images and video, they can quickly become worthless to security staff or law enforcement personnel. On the other hand, too much of the wrong type of light can create issues like ‘hot spots’ and overheating, which can diminish crucial details and eventually cause irreversible camera damage. Fortunately, there has been a recent global shift that is sending users away from the old incandescent and fluorescent bulbs, and toward LED lighting. Regardless of the type of CCTV application, there are an abundance of reasons to stop using alternative types of illumination. Here are 3 of the most substantial. 1. Better illumination and clarity You would think it would be common knowledge by now that cameras need light to see, and well-lit areas provide less cover for criminals to commit crimes. However, it is still somewhat commonplace to have sites where either not enough lighting or the wrong kind of lighting is implemented. Increasing the quality of illumination in an area has the ability to deter crime, make other accompanying safety devices perform better and even improve the accuracy of video analytics. LED lamps are currently the only security lighting option that possesses a multitude of point sources, making it possible to  aim your light Integrators need a lighting solution that consistently performs, and when it comes to supplying the best operation, price, and durability; external LED lighting is the only choice. One particular aspect of external LED lighting that makes optimum illumination possible is the strategic uniformity of its design. External LED lamps are currently the only security lighting option that possesses a multitude of point sources, making it possible to literally aim your light by situating individual diodes in a specific angle or position. This type of alignment offers a more consistent and predictable light source than anything else on the market, eliminating much of the uncertainty involved in installation. This allows you to light a larger area more effectively and efficiently with nearly zero effort. 2. Faster start-up time Whether you are talking about protecting a utilities facility, school campus or international border, it doesn’t take long for an incident to occur. Unlike traditional HID (high intensity discharge) lights, which can take up to a half an hour to reach full competency, LED’s spark up immediately. The colder the climate of the area, the more difficulty the HID bulbs have getting started and functioning properly. Given that there are many places in the United States alone where temperatures can sit at or below single digits, it seems almost absurd to consider anything else besides LED lighting. This sizable flaw can be especially detrimental if attempting to set up any kind of crime deterring, motion detection solution. One of the most crucial components of a sufficient response system is reaction time. Having a sluggish start up regarding any component is much like having a 15 year-old guard dog laying in your yard. By the time the security lights get up and running, the offender has already committed the crime and vacated the premises. And as dependable as the old boy may have been in the years past, he is now just too darn slow. And with an industry that is quickly moving toward more effective real-time, situational security solutions, a hesitated response is the last thing desired. Unlike traditional HID lights, which can take up to a half an hour to reach full competency, LED’s spark up immediately 3. Increased life span and efficiency Organisations have the opportunity to save thousands of dollars each year in energy costs, whilst increasing site security by switching to LED based illuminators. LED’s provide the lowest running cost currently available, with less than 100 watts needed for the most powerful of units. Not to mention, the majority of additional wattage needed for other types of lighting units is generally burned off in the form of unwanted heat, decreasing both quality and length of life. How much longer LED’s lasts when compared to the alternative is astounding. For example, the average life span of an incandescent bulb is about 1,000 hours; fluorescent bulbs last for around 10,000 hours, while LED’s can shine bright up an impressive 100,000 hours. That is 100 times longer without changing a bulb. Furthermore, installing LED’s not only saves money in the form of lower energy and running costs, but also provides a very low rate of bulb malfunction or failure. This cuts down on maintenance fees as well as possible down time that could result in vulnerability. Inspections and servicing of lights alone can be very expensive and time consuming. LED’s radiate much less heat, reducing the chance of insect complications and helping prevent hot spot development, again saving you time, money and frustration at every camera site. Enhancing overall security solution As time goes on, the importance of strategic lighting becomes more and more evident for the security industry. The continual growth of technologically advanced video solutions (biometrics, crowd detection, motion tracking, etc.) demands a level of clarity and consistency that can only obtained through proper lighting. LED’s not only yield a lower running cost and better performance, they provide an enhanced level of control. The most important benefit of a security tool is not always how it performs independently, but how it increases the effectiveness of the overall security solution it is a part of.