Access control software - Expert commentary

How AI and security guards work together using video analytics
How AI and security guards work together using video analytics

How AI and humans can work together is a longstanding debate. As society progresses technologically, there’s always the worry of robots taking over jobs. Self-checkout tills, automated factory machines, and video analytics are all improving efficiency and productivity, but they can still work in tandem with humans, and in most cases, they need to. Video analytics in particular is one impressively intelligent piece of technology that security guards can utilise. How can video analytics help with certain security scenarios? Video analytics tools Before video analytics or even CCTV in general, if a child went missing in a shopping centre, we could only rely on humans. Take a crowded Saturday shopping centre, a complex one with a multitude of shops and eateries, you’d have to alert the security personnel, rely on a tannoy and search party, and hope for a lockdown to find a lost or kidnapped child. With video analytics, how would this scenario play out? It’s pretty mind-blowing. As soon as security is alerted, they can work with the video analytics tools to instruct it precisely With the same scenario, you now have the help of many different cameras, but then there’s the task of searching through all the CCTV resources and footage. That’s where complex search functions come in. As soon as security is alerted, they can work with the video analytics tools to instruct it precisely on what footage to narrow down, and there’s a lot of filters and functions to use. Expected movement direction For instance, they can tick a ‘human’ field, so the AI can track and filter out vehicles, objects etc., and then they can input height, clothing colours, time the child went missing, and last known location. There’s a complex event to check too, under ‘child kidnap’. For a more accurate search, security guards can then add in a searching criterion by drawing the child’s expected movement direction using a visual query function. A unique function like this enables visual criteria-based searches rather than text-based ones. The tech will then narrow down to the images/videos showing the criteria they’ve inputted, showing the object/child that matches the data and filter input. Detecting facial data There are illegal demonstrations and troublesome interferences that police have to deal with A white-list face recognition function is then used to track the child’s route which means the AI can detect facial data that has not been previously saved in the database, allowing it to track the route of a target entity, all in real time. Then, security guards can confirm the child’s route and current location. All up-to-date info can then be transferred to an onsite guard’s mobile phone for them to confirm the missing child’s movement route, face, and current location, helping to find them as quickly as possible. Often, there are illegal demonstrations and troublesome interferences that police have to deal with. Video analytics and surveillance can not only capture these, but they can be used to predict when they may happen, providing a more efficient process in dealing with these types of situations and gathering resources. Event processing functions Picture a public square with a number of entries into the main area, and at each entry point or path, there is CCTV. Those in the control room can set two events for each camera: a grouping event and a path-passing event. These are pretty self-explanatory. A grouping event covers images of seeing people gathering in close proximity and a path-passing event will show when people are passing through or entering. The video analytics tool can look out for large gatherings and increased footfall to alert security By setting these two events, the video analytics tool can look out for large gatherings and increased footfall to alert security or whoever is monitoring to be cautious of protests, demonstrations or any commotion. Using complex event processing functions, over-detection of alarms can also be prevented, especially if there’s a busy day with many passing through. Reducing false alarms By combining the two events, that filters down the triggers for alarms for better accuracy to predict certain situations, like a demonstration. The AI can also be set to only trigger an alarm when the two events are happening simultaneously on all the cameras of each entry to reduce false alarms. There are so many situations and events that video analytics can be programmed to monitor. You can tick fields to monitor any objects that have appeared, disappeared, or been abandoned. You can also check events like path-passing to monitor traffic, as well as loitering, fighting, grouping, a sudden scene change, smoke, flames, falling, unsafe crossing, traffic jams and car accidents etc. Preventing unsafe situations Complex events can include violations of one-way systems, blacklist-detected vehicles Complex events can include violations of one-way systems, blacklist-detected vehicles, person and vehicle tracking, child kidnaps, waste collection, over-speed vehicles, and demonstration detections. The use of video analytics expands our capabilities tremendously, working in real time to detect and help predict security-related situations. Together with security agents, guards and operatives, AI in CCTV means resources can be better prepared, and that the likelihood of preventing unsafe situations can be greatly improved. It’s a winning team, as AI won’t always get it right but it’s there to be the advanced eyes we need to help keep businesses, premises and areas safer.

Protect physical assets from cyber-attacks
Protect physical assets from cyber-attacks

Recent cyber-attacks have disabled and even shut down physical assets. Robust foundational security and training staff, able to recognise an attack can help mitigate the threat, as ABB’s Rob Putman explains. Edge devices and data analytics As cyber security specialists, we must navigate an ever-changing threat landscape, one that is made even more complex by the increased interconnectivity between Operational Technology (OT) and Information Technology (IT), as companies look to leverage edge devices and data analytics, as well as remote connectivity, in the wake of the COVID-19 pandemic. As the threat surface evolves, the industry must guard against attacks on key physical infrastructure, carried out by a range of malicious actors, including nation states and criminals intent on blackmail. The chemicals sector, a high-value target for cyber-criminals Cyber-criminals view the chemicals sector, as a high-value target, because of the potential cost In 2017, not long after a ransomware attack that targeted Maersk, the world’s largest shipping firm, made the news around the world. Another cyber-attack, this time targeting physical industrial assets, generated fewer headlines, and yet could have resulted in both real, as well as financial, damage. Cyber-criminals view the chemicals sector, as a high-value target, because of the potential cost, both financial and reputational, to the operator, should production be interrupted or stopped entirely. Cyber security vulnerabilities put physical assets at risk The attack in question, a ‘Triton’ custom malware attack on a petro-chemical facility in Saudi Arabia, targeted a safety system, taking over system controllers. Bugs in the code triggered an emergency shutdown, but could have led to the release of toxic and explosive gases. It was a vivid reminder of how cyber security vulnerabilities are increasingly putting companies’ key physical assets at risk. Two more-recent high-profile incidents illustrate my point. In February, a Florida water treatment plant was hacked. The malicious actor remotely accessed the system for three to five minutes, during which time they opened various functions on the screen, including one that controls the amount of sodium hydroxide (NaOH) in the water. The hacker changed the NaOH from about 100 parts per million to 11,100 parts per million, which could have resulted in a mass poisoning event. Colonial Pipeline cyber-attack incident Then, in May, the Colonial Pipeline system that originates in Houston, Texas and carries gasoline, and jet fuel, suffered a ransomware attack. Using a VPN, hackers targeted back-office IT systems, forcing Colonial to shut down IT hosts and network infrastructure, severing communication with those OT systems that are responsible for communicating ‘transactional data’ associated with fuel delivery. In this instance, a single compromised password disrupted Colonial’s ability to invoice its customers. This dependency on OT data stopped pipeline and business operations, and the company was elected to pay the hackers an initial ransom of US$ 4.4 million, in order to restore operations. The Colonial attack was multi-dimensional, in that it not only impacted Colonial’s business, but also the wider US economy and national security, since the pipeline transports nearly half of the east coast's fuel supplies. Outdated IT system elevates physical risk The increased interconnectivity between IT and OT can also create vulnerabilit Attacks such as these prove that, armed with little more than a laptop, an email account and access to the dark web, determined hackers can cause disproportionate damage to physical infrastructure. As mentioned at the outset, the increased interconnectivity between IT and OT can also create vulnerability. Producers often want to know: Is it risky to connect a production asset or their operational environment to the Cloud? My answer is, if you do so without having done any risk audits around people, processes and technology, or without enhancing and maintaining that environment, then yes, that is risky. For example, we often observe that the life cycle of a production asset far outlasts the IT systems that are used to run it. Take a cement kiln. Several generations of plant operators may have come and gone, but that asset may still run, using legacy software, such as Windows XP and why not? Need to replace aging distributed control systems Well, that’s fine, if you are not concerned about having that asset compromised, and all that entails. A ‘flat’ IT network, an aging distributed control system, and machines with legacy versions of Microsoft Windows, all these elements, which are still commonplace in many industries, make it much easier for attackers to find and infiltrate a company, without needing sophisticated tools. The age-old mantra of not interfering with a piece of equipment or software that appears to be working, often applies to the individual assets. For example that cement kiln that are still controlled by the same Windows XP-based control software. However, if we’re honest, things have changed quite a bit, not because something was broken, but because innovation came in. That same kiln control system is most likely connected to other systems, than when first commissioned and that opens it to exposure to threats that it was never designed for. The human element There is a misconception that IoT-connected devices can open companies to risk There is a misconception that IoT-connected devices can open companies to risk, but many recent, high-profile cyber-attacks have been conducted from a laptop, by hacking someone’s VPN, or are a simple phishing/malware attack. In all these cases, the human element is partly to blame. Take the Florida attack. The compromised computer at the water treatment facility was reportedly running an outdated Windows 7 operating system and staff all used the same password, in order to gain remote access via the Teamviewer app, which the hacker was then able to use. Physical and human assets, key to robust cyber security Discussion on the best way to mitigate the threat is often framed solely around specific technical solutions and ignores the fact that robust foundational cyber security is really driven by two very different, but equally important, types of capital: physical assets (e.g. production machinery), and human assets. The truth is that smart digital software and industry-renowned cyber security applications, while critical, are in many cases, only as good as the weakest human link in the chain. Industry would, therefore, do well to ask itself the following question: Do we have a security problem, or a complacency problem? At this juncture, it is important to point out that the majority of companies that ABB works with, are at least aware of the threat posed by cyber attackers, and the potential impact of an attack, on their revenues, reputation and bottom line. User error and human-generated exposures Making sure staff are aware of the threat and training them to respond properly, if they are targeted, is vital However, user error and human-generated exposures are where most of these attacks occur. Those human failures are mostly not due to malicious intent from employees, but to the lack of training of the employees on secure behavior. Making sure staff are aware of the threat and training them to respond properly, if they are targeted, is vital. However, there are also age demographics at play here. Much of the operations employee base is heading towards retirement and often, there is no plan or ability to backfill these people. Need to invest in new digital and automated technologies If you think you don't have enough people now, in order to stay on top of basic care and feeding of the OT environment, with regards to security, what is that going to be like in 20 years? For this reason, there must be a major industry reset, when it comes to its workforce. Companies must invest in new digital and automated technologies, not only to ensure that they stay ahead of the curve and mitigate risk, but also to attract the next generation of digitally literate talent. Robust cyber security is built on solid foundations When we talk about foundational cyber security, we mean fundamentals, such as patching, malware protection, high-fidelity system backups, an up-to-date anti-virus system, and other options, such as application allow-listing and asset inventory. These basic controls can help companies understand their system setup and the potential threats, identify vulnerabilities, and assess their risk exposure. The Pareto principle states that around 80% of consequences come from 20% of the causes. In the context of cyber security, that means 80% of exposure to risk comes from 20% of the lack of security. If companies do the foundational things right, they can manage out a significant amount of this risk. Importance of maintaining and upgrading security controls However, having basic security controls, such as anti-virus software in place, is just the first step on that journey. Equally important is having someone within the organisation, with the requisite skill set, or the extra labour bandwidth, to operate, maintain and update those security controls, as they evolve. Educating, training and recruiting existing employees, and the next generation of talent, along with forging partnerships with trusted technology providers, will ensure that industry can leverage the latest digital technologies, in order to drive business value, and secure physical assets against cyber-attacks.

The robotic transformation of the security industry
The robotic transformation of the security industry

The COVID-19 pandemic is only accelerating the expansion of Automation, Robotics, Machine Learning (ML) and Artificial Intelligence (AI), and changing how people live their daily lives. This expansion leads the way with technologies that are developed to solve problems, improve operations, streamline processes and assist people, to focus on learning new skills, creativity, and imagination. Transformation of the physical security industry One of the latest industries to be permanently transformed is physical security. The era of utilising security cameras is slowly changing into more advanced and more efficient technological applications - security robotic solutions. SMP Robotics is a California-based company, which is a pioneer in developing robotic technologies, powered by AI, to assist, improve and deliver on new expectations in today’s world. One of their services is smart surveillance systems. This represents a proactive approach to security. The company, SMP Robotics’ Founder and Chief Executive Officer (CEO), Leo Ryzhenko, stated “Autonomous robotic technologies will become a driving force in future security solutions.” Robotics and AI in autonomous security solutions The robots can patrol 24/7, counteracting intrusion and communicating via voice message with guards The company uses robotics and AI technology to implement autonomous security solutions, which reduce liability and overhead, as well as improving the quality of services. Robotic guards are capable of patrolling all types of facilities, in both urban and rural contexts. The robots can patrol 24/7, counteracting intrusion and communicating via voice message with guards. The inspection robots, deployed by SMP Robotics, are easily integrated with many existing security technologies, armed with obstacle avoidance and anti-collision measures, automatically recharge, and can recognise faces up to 50 metres. As the world grows increasingly complex, technology like this is essential to ensure safety for all. AI-enabled autonomous video monitoring ground vehicles The advancements in technological breakthroughs of SMP Robotics position the company and its AI-powered, autonomous video monitoring ground vehicles, to be the most adaptable to any industry, cost-effective for clients’ business needs, in providing various types of services from public safety, crime prevention, to asset protection and physical security. SMP Robotics continues to implement new innovative solutions and groundbreaking technologies in its latest generation of autonomous models. Currently, many were already deployed or in a process to be delivered to a number of key clients, in various industries throughout the globe, from oil & gas, nuclear power plants to data centers, healthcare facilities, and amusement parks. Smart security robots Tal Turner, the Vice President (VP) of Business Development and Partnerships, SMP Robotics, said “We provide autonomous, artificial intelligence, all-weather, all-surface, smart security robots that are turnkey and operate independently on their own, using real-time obstacle avoidance, face recognition, and other cutting-edge technological advancements.” According to Coherent Market Insights, the Robots as a Service (RaaS) market direction will grow by 15.9% by 2028 and reach the threshold of 41.3 billion dollars. SMP Robotics stands at the forefront of the security robotic revolution, making an impactful change to make the world a safer place.

Related white papers

Top 5 ways to ensure visitor safety and security

Moving to mobile: A guide for businesses switching to mobile access control

Attention OEMs: 5 Ways RFID Readers Can Secure Your Markets